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Abstract

We consider the utility of two key properties
of network-embedded storage: programmability and
network-awareness. We describe two extensive applica-
tions, whose performance and functionalities are signif-
icantly enhanced through innovative combination of the
two properties. One is an incremental file-transfer system
tailor-made for low-bandwidth conditions. The other is
a “customizable” distributed file system that can assume
very different personalities in different topological and
workload environments. The applications show how both
properties are necessary to exploit the full potential of
network-embedded storage. We also discuss the require-
ments of a general infrastructure to support easy and ef-
fective access to network-embedded storage, and describe
a prototype implementation of such an infrastructure.

1 Introduction

For wide-area distributed services, network-embedded
storage offers optimization opportunities that are not
available when storage resides only at the edges of the
network. A prime example of this is content-distribution
networks, such as Akamai, which place storage servers
at strategic locations inside the network and direct client
requests to servers that are “close” to them, thus achiev-
ing reduced access latency for the clients and better load
balance at the servers.

Given the desirability of network-embedded storage,
a natural question to ask is this: What is a good “ac-
cess model” for network-embedded storage that allows
services to realize its full potential? By access model, we
mean mechanisms through which diverse services can use
the network-embedded storage resources to satisfy their
diverse needs.

One simple access model is what can be referred to
as thefixed-interfacemodel. In this model, each em-
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bedded storage element exports a fixed set of high-level
operations (such as caching operations). Service-specific
code is executed only at edge-nodes. This code manu-
factures service-specific messages and sends them into
the network to manipulate the embedded storage elements
through the fixed interface. An example of this model
is the Internet Backplane Protocol (IBP) proposed in the
“Logistical Networking” approach [8].

Although the fixed-interface model does benefit a cer-
tain class of services, it has two main limitations. First, it
does not have sufficient flexibility. Due to the extremely
diverse needs of distributed services, it may be difficult to
arrive at an interface that caters well to all present and fu-
ture services. Second, the restriction that service-specific
code executes only at the edges of the network, and not at
the embedded storage elements, imposes a severe limita-
tion, both on the functionalities provided by the services
and the optimization opportunities available to them. For
example, for application code executing at the edges, it is
often difficult to gather information about changes in the
load and network conditions around an embedded storage
element, and then to respond to such changes in a timely
fashion.

These limitations point to the need for the following
properties. (1)Programmability: the services should be
able to execute service-specific code of some form at the
embedded storage elements. (2)Network-awareness:the
code executing at these elements should be able to use
dynamic information about the resources at and around
them. We do not claim that any of these properties is novel
by itself. We, however, do believe that it is the combina-
tion of the two that is necessary to realize the full potential
of embedded storage.

To support this hypothesis, this paper presents qualita-
tive and quantitative evidence in the form of two applica-
tions of network-embedded storage. One is an incremen-
tal file-transfer service tailor-made for low-bandwidth
conditions (Section 2). The other is a “customizable” dis-
tributed file system that can assume very different person-
alities in different topological and workload environments
(Section 3). In these applications, we explicitly point out
how the absence of any one of the two properties would
significantly limit their power, both in terms of func-
tionality and performance. These applications also show
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that the combination of programmability and network-
awareness is useful in a diverse set of environments, in-
cluding both local and wide area networks. A general
theme of our work is that in any system configuration or
service, if a storage element is in a position to exploit its
location advantage intelligently, it should be programmed
to do so.

Next in this paper, we consider the question of real-
world deployment of services that intend to use network-
embedded storage. To launch such a service today, a ser-
vice provider is typically required to reach agreements
with data centers to acquire the needed storage and phys-
ical space. This is often an inefficient, time-consuming
and costly process, which imposes a significant barrier-
to-entry for smaller service providers, and hinders short-
term experimentations. A different alternative is to invest
effort in a shared, general-purpose infrastructure specif-
ically targetted toward reducing the effort and overhead
associated with deploying and customizing services.

We discuss the requirements of a general infrastruc-
ture to support easy and effective access to programmable
network-embedded storage in Section 4, and describe
a prototype implementation of such an infrastructure in
Section 5. We refer to such an infrastructure as aPrognos
(PROGrammable Network Of Storage), and to each em-
bedded storage element in it as aStone(STOrage Network
Element).

The resource platform for a Prognos can be either
commercially owned, or collaboratively supported as in
the PlanetLab project [24] (www.planet-lab.org). As long
as the Stones have access to network information, the
making of the Stones and the links among them can be
quite flexible. One possibility is to construct a Prognos
on top of an overlay network [5]. The overlay links used
should approximate the underlying physical topology, and
the Stones can simply be general-purpose computers. The
other potentially more efficient possibility is to co-locate a
Stone with a router and the links among the Stones would
largely be physical. An extreme form of this co-location is
to couple a router and a Stone in the same physical pack-
aging.

We refer to the systems-support module of a Prognos
as SOS (Stone Operating System). SOS is responsible
for managing the physical resources at the participating
Stones, and for allowing services to inject service-specific
code into the Stones in a secure fashion. A PlanetLab-
like platform, for example, can be turned into a Prognos
by loading the participating machines (also referred to as
Stones) with the SOS module. We believe that such a
collaboratively-supported Prognos can serve as an effec-
tive research tool to enable innovators to quickly deploy,
experiment with, and tear-down new services.

Figure 1: A simple rsync example.

2 Incremental File Transfer

We now describe a service intended to facilitate trans-
fer of incrementally changing, large files. An example
usage scenario of this service is one where a producer pe-
riodically releases new versions of the Linux kernel file,
and multiple consumers update their versions at different
times.

The basic idea is to use network-embedded storage el-
ements (or Stones) to optimize these file transfers. As data
flows through a sequence of Stones during a file transfer,
there is an obvious caching opportunity to benefit subse-
quent transfers. If, however, the Stones are capable of
executing complex service-specific code, more sophisti-
cated optimizations become possible. Our service, which
we call “Prognos-based rsync” (or Prsync), programs the
Stones to use thersync protocol to propagate files.

2.1 The rsync Protocol

The rsync protocol [31] (rsync.samba.org) is a tool for
updating an old version of a file with a remotely-located
new version. The protocol seeks to reduce network usage
by not transferring those portions of the new version that
are already present in the old version. A checksum-search
algorithm is used to identify such portions when the two
versions are not located on the same machine.

As a simple example, suppose that nodesX andY

have two versions of a file with contents shown in the top
and bottom rows of Figure 1, andX wants to getY ’s ver-
sion. X first partitions its version into fixed size blocks
and sends the checksums of those blocks toY . In the
example shown,X sends five checksums toY . Using the
checksums,Y is able to identify portions that are common
between the two versions.Y then sends toX a descrip-
tion of its version referencing the blocks atX wherever
possible. The middle row of letters shows the description
Y sends toX . X is then able to reconstructY ’s version
from this description. If the two versions share several
blocks, then there is significant saving in the number of
bytes transferred.

2.2 Prsync

We examine four aspects of Prsync relating to the pro-
grammability and network-awareness of the Stones. First,
we show how programmability of Stones enables rapid
deployment of Prsync-like services, even when one does
not have full cooperation of edge machines. Second, we
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describe how Stones can themselves use pair-wise rsync
exchanges to improve end-to-end performance. Third, we
describe how Prsync adapts to its environment by exploit-
ing the network-awareness of Stones. Fourth, we describe
how network information can be combined with service-
specific state in a service-specific manner to achieve good
performance.

2.2.1 Interaction with Legacy Protocols

Consider a scenario where a producer and a consumer
want to engage in a file update, but they lack the ability
to participate in rsync exchanges. Assume that the Stones
have been programmed to cache files, execute checksum-
search algorithms, and participate in the Prsync protocol.
The system can still be used to transfer files efficiently.
The file is first copied from the producer to a nearby Stone
using a legacy protocol. The file is then efficiently prop-
agated using Prsync to a Stone that is located close to the
consumer. As the last step, the file is copied from this
Stone to the consumer using a legacy protocol. This is
an example of an end-to-end legacy protocol that benefits
from programmable network-embedded storage.

2.2.2 Hop-by-Hop Interaction

In the above scenario, the Prsync protocol is executed
between two Stones that are potentially separated by a
weak wide-area connection. The performance could be
further improved if we were to enlist intermediate Stones
to decompose a long-distance rsync into a sequence of
short-distance hop-by-hop rsyncs. Here, the performance
improvement can come from a combination of two fac-
tors. First, intermediate Stones may already have a ver-
sion that is very close to the fresh version being propa-
gated. In such cases, fewer bytes will have to be trans-
ferred along some portions of the path. Second, after a
sequence of hop-by-hop rsync exchanges, all the inter-
mediate Stones also end up receiving the fresh version,
and therefore, they can satisfy future requests without re-
quiring end-to-end interactions. The hop-by-hop proto-
col demonstrates that simple caching in particular, or any
hardwired storage interface in general, on intermediate
Stones is not sufficient—instead, the programmability of
Stones is needed to allow them to participate in a sophis-
ticated protocol.

2.2.3 Adapting to Changing Environments

The rsync program employs a computationally expensive
checksum and compression algorithm. Its use may in fact
be counterproductive in cases of abundant link bandwidth,
drastic file content changes, or high CPU load on partic-
ipating nodes. In order for Prsync to adapt to these en-
vironmental factors in a timely fashion, the programma-

bility and the network-awareness properties of Stones be-
come indispensable. When an upstream nodeX starts
to send fresh data to a downstream nodeY , the two
nodes begin with the checksum-based rsync algorithm.
NodeX monitors two quantities dynamically: (1) the ra-
tio (r) between the number of bytes that have been actu-
ally transferred and the size of the content that has been
synchronized, and (2) the physical bandwidth achieved
(B). If r exceeds a threshold, which in turn is a pre-
determined function ofB (implemented as an empirical
table lookup), then the communicating nodes would aban-
don the checksum-based rsync, and revert to simply trans-
mitting the literal bytes of the fresh file. Note that such
adaptive optimizations need to be performed on a hop-
by-hop basis within the network—they are difficult, if not
impossible, to replicate at the edge. An additional opti-
mization to further reduce rsync overhead is to compute
the per-block checksums off-line, and store them along
with the file in the Stone’s persistent store.

2.2.4 Selecting Propagation Paths

In scenarios where there exists path diversity and pairs
of Stones are connected by multiple paths (as in over-
lay networks), Prsync can select propagation paths for
hop-by-hop synchronization based on application-specific
metrics. We have experimented with two specific meth-
ods of doing this. In thetree-basedmethod, an overlay
tree spanning all the Stones is constructed. The tree is
constructed using a minimum-spanning tree algorithm on
a graph where the nodes are Stones and the edges are
weighted with the inverse of pair-wise bandwidth. The
tree construction uses heuristics for constraining the node
degree and diameter of the resulting tree. The resulting
tree thus contains high bandwidth paths between all pairs
of Stones, and only these paths are used for hop-by-hop
rsync exchanges. Themesh-basedmethod maintains an
overlay graph in which each Stone is adjacent to a certain
number of other Stones to which it has high-bandwidth
links. When selecting a path between a pair of Stones,
all paths in this overlay graph are considered. Note that
the time taken for a pair-wise rsync exchange is deter-
mined by the link bandwidth and the difference between
the file versions at the two Stones. Prsync can monitor
pair-wise bandwidths, and also maintain estimates of the
differences between the file versions at different stones.
By using these estimates, abestpath (i.e., one for which
the expected time for hop-by-hop propagation of data is
minimized) can be selected in the mesh. This is an in-
stance where information about the network characteris-
tics is combined with service-specific state in a service-
specific manner to improve performance. It would be
difficult to achieve such optimizations without both pro-
grammability and network-awareness of Stones.
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Figure 2: The topology of the Prsync testbed.

Requester Versions e-to-e e-to-e h-by-h
copy (s) rsync (s) rsync (s)

CP V0 → V1 97.3 21.0 —
CW V0 → V2 97.8 21.5 9.6

Table 1: Prsync performance.

2.3 Prsync Experimental Results

We describe Prsync experiments from two platforms.
One platform uses a set of machines in our laboratory that
can be operated in a controlled environment. The other
consists of a set of PlanetLab machines distributed across
the wide-area.

Figure 2 shows the topology of the network con-
structed in our laboratory. Each node has Dual Intel
Pentium III processor, 1GB PC133 ECC SDRAM and a
60GB Maxtor 96147U8 disk. NodesCB, CP , andCW are
considered “edge” machines. The remaining machines
make up a Prognos core.CB serves as the producer of
the data.CP andCW are requesters.

In the following experiments, we synchronize Linux
kernel tar files. When we refer to file versionsV0,
V1, andV2 below, they correspond to “linux.2.0.20.tar”,
“linux.2.0.28.tar”, and “linux.2.0.29.tar” respectively.
Each of these files is about 25 MB in size. We show re-
sults of four experiments, each of which demonstrates one
of the aspects detailed in Section 2.2.

The first experiment demonstrates the ability of Prog-
nos to overcome a legacy protocol. The results are sum-
marized in the first row of Table 1. Initially,CP has ver-
sionV0, CB hasV1, and no other machine has any version
of the file. There is a weak link of 2.5 Mbps betweenS1

andS2; all remaining links are dedicated (separate) 100
Mbps. Now,CP desires to upgrade its file toV1 and it has
several options. It could use an existing legacy protocol
to copyV1 end-to-end fromCB to CP ; there is no store-
and-forward delay at any intermediate hop. Or it could
leverage the Prognos core so thatV1 is first copied from
CB to S1, then it is rsync’ed fromS1 to S5, and finally, it
is copied fromS5 to CP .1 Despite the store-and-forward
delay of Prsync, it is almost 5× better than the legacy pro-
tocol due to the bandwidth saving on the weak link.

1Note that in this and all subsequent Prsync experiments, data is al-
ways first written entirely to the disks at intermediate Stones (such asS1

andS5) before it is forwarded onto the next hop. Of course, this is not
necessary and a pipelined version could have worked better.

The second experiment demonstrates the usefulness of
exploiting intermediate Stones. The results are summa-
rized in the second row of Table 1. In this experiment,
initially, CW has versionV0, CB hasV2, andS3 hasV1

(as a result of satisfying a previous request, for example).
The link conditions are the same as in the previous exper-
iment. NowCW desires to upgrade its file toV2 and it
has three options. The first two options are similar to the
previous experiment: end-to-end copy fromCB to CW ,
or using an end-to-end rsync in the Prognos core fromS1

to S7. Because the content difference betweenV1 andV2

is small, the performance of these two options is similar
to that seen in the first experiment. Option three, how-
ever, leverages theV1 copy stored atS3, as Prsync per-
forms hop-by-hop rsync within the Prognos core. Only a
small amount of data is exchanged across the weak link
S1 → S2, thereby improving performance.

The third experiment demonstrates the importance of
adapting to environmental conditions. The performance
of pair-wise exchange is shown in Figure 3 under differ-
ent link bandwidth conditions. In this experiment, we at-
tempt to upgrade the kernel file from version 2.0.20 to ver-
sion 2.0.x, which constitutes the x-axis labels in the fig-
ure. We examine four different algorithms injected into
two neighboring Stones. “Rsync” refers to the vanilla
rsync algorithm. “Copy” refers to transferring the literal
bytes. “Rsync-precomp” improves vanilla rsync by pre-
computing and storing per-block checksums. “Hybrid”
adds the adaptive algorithm to “Rsync-precomp.” As ex-
pected, rsync performs well when the available bandwidth
is scarce or when the file difference is small compared to
the file size, and its performance can degrade significantly
otherwise. Pre-computing checksums improves rsync by
nearly a constant amount, but does not address the severe
degradation that rsync can experience. The adaptive algo-
rithm, though not always perfect, performs the best over-
all.

The fourth experiment is run on an overlay network
comprising of 34 PlanetLab nodes. Initially, every node
has a copy of version 2.0.21 of the Linux kernel. The
file is then updated at the source and some random sub-
set of the nodes synchronize their version with the newly
published version. This process is repeated for versions
2.0.22 through 2.0.29. Figure 4 shows the performance
of three alternatives: end-to-end rsync, hop-by-hop rsync
over fixed paths defined by a tree topology, and hop-
by-hop rsync over paths that are dynamically computed
over a mesh topology. The tree-based hop-by-hop method
shows improvements of more than30% over the end-to-
end rsync. The mesh-based method, combining network
information with service-specific state, shows a further
30% improvement over the tree-based method.
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2.4 Prsync Summary
Prsync demonstrates the utility of executing com-

plex service-specific code (e.g., rsync)at the embedded
storage elements. In addition, it shows how network-
awareness can allow services to adapt their behavior dy-
namically and flexibly. The results illustrate the perfor-
mance benefits of programmable network-embedded stor-
age elements that can perform complex tasks, such as
participating in hop-by-hop rsync protocols and execut-
ing application-specific routing algorithms. Such benefits
are difficult to obtain without both programmability and
network-awareness of embedded storage.

3 A Customizable Distributed File System

Today, we build cluster-based distributed file sys-
tems [6, 19, 30] that are very different from wide-area
storage systems [14, 18, 27]. Life would be simpler if
we only had to build two stereotypical file systems: one
for LAN and one for WAN. The reality, however, is more
complicated than just two mythical “representative” ex-
tremes: we face an increasingly diverse continuum, often
with users and servers distributed across a complex inter-
connection of subnets.

PROGNOS
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Client Kernel 

NBD

Client User

K
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Distributed

Lock
Manager

(DLM)

Figure 5: Components of Prognosfs.

Prognosfs is a “meta file system” in the sense that its
participating Stones can be customized to allow the re-
sulting system to exhibit different personalities in differ-
ent environments. Prognosfs software has two parts: (1)
a fixed framework that is common, and (2) a collection
of injectable components that run on participating Stones
and may be tailored for different workloads, and network
topologies and characteristics. (In the near future, we
envision injectable Prognosfs parts to be compiled from
high-level specifications of the workload and the physical
environment.)

3.1 Architecture and Component Details

Unlike several existing wide-area storage systems that
support only immutable objects and loose coherence se-
mantics [13, 14], Prognosfs is a read/write file system
with strong coherence semantics: when file system up-
date operations are involved, users on different client ma-
chines see their file system operations strictly serialized.
Of course, we are not advocating that this is the only
coherence semantics that one should implement—it just
happens to be one of the desirable semantics that makes
collaboration easy.

Figure 5 shows the Prognosfs parts in greater detail.
The fixed part is similar to that of the Petal/Frangipani
systems [19, 30]. For each file system call, a Prognosfs
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client kernel module translates it into a sequence of a lock
acquisition, block reads/writes, and a lock release. This
sequence is forwarded to a Prognosfs client user module
via the Linux NBD pseudo disk driver. The read and
write locks provide serialization at the granularity of a
user-defined “volume” and they are managed by the Dis-
tributed Lock Manager. If a client fails without holding a
write lock, no recovery action is required. If a client fails
while holding the write lock of a volume, a recovering
client inherits the write lock and runsfsck on the failed
volume. These components of Prognosfs are fixed.

The customizable part of Prognosfs lies within the
Distributed Virtual Disk (DVD). Externally, the interface
to the DVD is very much like existing distributed virtual
disks such as Petal [19]. The difference is that, internally,
while all Petal servers are identical, the DVD consists of
a number of peer Stones, each of which can run a spe-
cialized piece of code to perform functions such as se-
lective caching, active forwarding, replication, and dis-
tribution of data to other Stones. These decisions can
be made based on network topology, network condition,
Stone load, and Stone capacity information that is typ-
ically either unavailable or difficult to determine accu-
rately and responsively at the edge.

Figure 6 shows several example topologies. In Fig-
ure 6(a), clients on each of the two subnets can read
data served by Stones on either subnet. If, for example,
the clients of the right subnet repeatedly read data from
Stones on the left, they might increase the load on the
left subnet. As the “bridge Stone”Sb detects this access
pattern, due to its awareness of the topology,Sb can take
several possible actions to reduce the load: (1)Sb could
cache data from the left subnet in its own persistent store.
(2) If Sb itself becomes a bottleneck,Sb could forward a
copy of the data to a Stone in the right subnet and this
Stone would absorb future reads. (3) As reply data flows
from the left subnet to a client in the right subnet,Sb could
distribute the data across multiple Stones in the right sub-
net.

In Figure 6(b), the Stones in the middle layer (Ss) form
a “switching fabric”—they accept requests from clients
and perform functions such as load-balancing and strip-
ing as they forward requests to the next tier Stones. The
role played by anSs is analogous to that played by a
µproxy, an NFS interposition agent [4]. Such interposi-
tion agents are just an example of the kind of function-
alities that Prognosfs can enable. (Unlike aµproxy, the
switching fabric is fully programmable, can have its own
storage, and is not limited to the NFS protocol.)

In Figure 6(c), we replace a number of wide-area
routers with their Stone counterparts. To see the role
played by network-awareness, consider an example where
S4, on its clients’ behalf, reads data stored atS1. As data
flows back on the pathS1 → S0 → S2 → S4, S0 does not
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Figure 7: The topology of the Prognosfs testbed. AnSx is a Stone. A
Cx is a “client”. An Rx is a network switch that houses no disk and is
not programmable.R1 is a Netgear Fast Ethernet Switch FS108.R2 is
an Intel Express 510T Switch. All links are 100 Mbps.

need to cache the data,S2 may cache the data in the hope
thatS3 may demand it later, andS4 may cache the data in
the hope that its own clients may demand it again. Once
S3 does read the cached data atS2 and caches it itself,S2

may choose to discard it.
In each of these examples, the function executed by a

Stone is intimately associated with its often unique posi-
tion in the network. Furthermore, although we have de-
scribed the above Stone functions in the context of Prog-
nosfs, the concepts are more generally applicable to other
Prognos applications.

While the Prsync application (Section 2) relies on a
known producer to ensure that a requester receives an up-
to-date copy of the desired data, the presence of multiple
readers and writers and the presence of multiple copies
in Prognosfs demand a data location service from the un-
derlying Prognos infrastructure. Given an object ID, the
location service is responsible for locatinga replica for a
read request, and for locatingall obsolete replicas to in-
validate (or update) for a write request. This service is
briefly described in Section 5.5.

We have implemented an initial prototype Prognosfs,
along with a few of its incarnations that are customized to
work for some different topologies. Existing applications
on multiple Linux client machines are able to transpar-
ently read/write-share Prognosfs volumes.

3.2 Prognosfs Experimental Results

We describe results obtained on two platforms. The
first is a network topology built inside our laboratory. Fig-
ure 7 gives its schematic diagram. Two switches (R1 and
R2) are connected via a bridge Stone (Sb) and each switch
is connected to a number of more Stones and clients. The
Stones and the clients have same characteristics as those
described in Section 2.3. The second platform consists of
a wide-area configuration. Schematically, it looks similar
to Figure 7, except that the Stones and the clients are dis-
tributed between two different sites. StoneS1 and client
C1 are located in Arizona and all other nodes are located
in Princeton. Communication between the two sites uses
a weak wide-area Internet link.

A singlerun of our experiment has 8 phases. In Phase
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1, clientC1 creates data that is stored at its nearest Stone
S1. In the remaining phases, different sets of clients read
the data created in Phase 1. A singlesetof experiments
consists of 3 runs. In each of these runs, the bridge Stone
Sb is programmed differently. We refer to the three cases
as “Forward”, “Cache” and “Distribute”. In the “For-
ward” case,Sb simply forwards the data to the target
client. For example, whenC2 requests data that resides
only on S1, Sb simply forwardsC2’s request toS1 and
S1’s reply back toC2. In the “Cache” case,Sb is also
programmed to cache in its local persistent store any data
that it forwards from one switch to the other. In the “Dis-
tribute” case,Sb also forwards an additional copy of the
data to one of the Stones connected to the target switch in
a round-robin fashion. Therefore, when forwarding data
to a client connected toR2, it forwards an additional copy
to one ofSb, S2, S3 andS4. Note that in the “Cache”
and “Distribute” cases, the Prognos location service is in-
voked to keep track of the additional copies.

3.2.1 Exercising the DVD Interface

We first discuss the results from the platform built inside
our laboratory, presented in the top half of Table 2. In
phase 1, 100 MB of data is created byC1 using the DVD
interface. The data is stored on its nearest StoneS1. In
phase 2,C1 reads the data back. The behavior of these
phases are identical for the three runs. The bandwidth of
these phases are limited by the link speed (and software
overhead). In phase 3,C2 reads the data. For the “For-
ward” case, the bandwidth experienced byC2 is similar to
that experienced byC1. In the “Cache” and “Distribute”
cases, however, the extra activity atSb degrades the band-
width experienced byC2.

In phase 4,C2 reads the data again. In the “Forward”
case, the request is still satisfied byS1 and the bandwidth
observed byC2 remains the same. In the “Cache” case,
C2 is able to read the cached copy atSb. In the “Dis-
tribute” case,C2 reads data fromSb, S2, S3, andS4 in a
striped fashion. In all these cases,C2’s bandwidth is again
limited by the link speed. In phase 5,C3 reads the data.
Its bandwidth is similar to that experienced byC2.

In phase 6,C1 andC2 read the data simultaneously.
In the “Forward” case, the two clients are forced to share

a single link toS1. In the other two cases,C1’s requests
are satisfied byS1 while C2 has its requests satisfied by
Stone(s) connected to the other switch, soC1 andC2 both
achieve near wire speed.

In phase 7,C2 andC3 read the data simultaneously.
In the “Forward” and “Cache” cases, the two clients are
forced to share the link toSb. In the case of “Distribute”,
the two clients share the striped bandwidth to all the
Stones connected to the right switch.

In phase 8, all three clientsC1, C2, and C3 read
the data simultaneously. In the case of “Forward”, all
three clients contend forS1’s bandwidth. In the case of
“Cache”,C1 monopolizes the bandwidth fromS1, while
C2 andC3 share the bandwidth fromSb. In the case of
“Distribute”, all Stones are utilized and the clients achieve
the greatest aggregate bandwidth.

The bottom half of Table 2 presents results for the
wide-area configuration. The “Cache” and “Distribute”
strategies, in addition to distributing the load among mul-
tiple Stones, also contribute toward masking the disadvan-
tages of the weak wide-area link between the two collab-
orating sites. Data traverses the weak-link only once in
Phase 3, and subsequent phases are able to finish with lo-
cal communication only. We use a PlanetLab machine in
Arizona asS1, which apparently has a slower disk. This
explains the relatively poor write performance in Phase
1. The performance during the remaining phases is as ex-
pected.

3.2.2 Exercising the File-system Interface

We now present results for experiments where clients use
the Prognosfs file-system interface to write and read data.
We were unable to run the file-system level benchmarks
on the wide-area configuration because we lacked root ac-
cess on the Arizona client machine. Therefore, we only
present results for the platform built inside our laboratory.
Table 3 reports an experiment where a 100 MB file is cre-
ated in Phase 1 and read in the remaining phases. The
results show trends similar to those in the top half of Ta-
ble 2, except that the client bandwidth is degraded due to
the overheads of going through the in-kernel NBD pseudo
disk driver.

Table 4 presents results for a more general file-system
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Phase no. 1 2 3 4 5 6 7 8
C1 Write C1 C2 C2 C3 C1, C2 C2, C3 C1, C2, C3

(MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s)
Forward 10.4 11.1 11.0 11.0 11.0 5.1, 5.1 5.6, 5.7 5.1, 3.5, 3.5

Laboratory Cache 10.4 11.1 10.6 11.0 11.0 11.1, 11.1 5.6, 5.6 11.1, 5.6, 5.6
Distribute 10.4 11.1 6.2 10.9 11.0 11.1, 10.9 7.5, 7.2 11.1, 6.3, 6.3

Forward 2.0 10.4 2.1 2.1 2.0 10.1, 1.3 1.1, 1.1 9.6, 0.9, 0.9
Wide-Area Cache 2.0 10.4 1.8 11.0 11.0 10.7, 11.0 5.6, 5.6 10.7, 5.6, 5.6

Distribute 2.0 10.4 2.1 10.9 11.0 9.6, 10.9 9.6, 9.6 10.1, 10.1, 9.8

Table 2: Client bandwidth when exercising the DVD interface.

Phase no. 1 2 3 4 5 6 7 8
C1 Write C1 C2 C2 C3 C1, C2 C2, C3 C1, C2, C3

(MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s)
Forward 7.6 7.6 8.4 8.4 8.4 4.6, 4.6 5.4, 5.4 3.7, 3.1, 3.1
Cache 7.7 7.7 7.0 8.6 8.7 8.4, 8.6 5.5, 5.5 8.4, 5.5, 5.5
Distribute 7.3 7.3 5.6 8.4 8.4 8.4, 8.4 6.4, 6.5 8.4, 6.5, 6.5

Table 3: Client bandwidth when exercising the file system interface.

level benchmark called “MMAB”. It is a modified version
of the “Modified Andrew Benchmark” [23]. (We modi-
fied the benchmark because the 1990 benchmark does not
generate much I/O activity by today’s standards.) MMAB
performs five steps—the first three are write steps and the
last two are read-only steps. The first step creates a di-
rectory tree of 3,000 directories, in which every non-leaf
directory has ten subdirectories. The second step creates
one large file of size 50 MB. The third step creates three
small files of size 4 KB in each of the directories. Step
four computes disk usage of the directory tree by invoking
du. The final step reads the files by performing awc on
each file. We present the results from running MMAB on
our testbed in Table 4. In phase 1, the first three MMAB
steps are performed onC1. (The performance of these
steps is shown by the three figures delimited by the two
colons in each entry for phase 1 in Table 4.) Each of the
remaining phases performs steps four and five. (The per-
formance of these two steps is shown by the two figures
delimited by the one colon in each entry from phase 2 to
8 in Table 4.) Again, the “Cache” and “Distribute” strate-
gies pay the cost of replication in phase 3 for potential
benefits in later phases.

3.3 Prognosfs Summary
Prognosfs is an example that illustrates some of the

extremely diverse customizations made possible by pro-
grammable embedded storage. The example strategies,
such as “Cache” and “Distribute”, and others mentioned
in the context of Figure 6, serve to show that a fixed inter-
face for embedded storage may not always be sufficient.
Different strategies suit different system configurations,
and even in a given configuration, the benefits of a given
strategy are highly workload-dependent. Therefore, the
ability to dynamically adapt the behavior of embedded

storage is often important. In some cases, it may be pos-
sible to execute the functions mentioned above by issuing
commands from the edges of the network, but this often
incurs overheads and lacks the ability to quickly adapt to
the workload.

4 Prognos Discussion

As mentioned in Section 1, a Prognos can be built
on top of an overlay network, or even a set of wide-
area routers. The Prognos approach, however, is equally
applicable to both LAN and WAN environments. Pre-
vious cluster-based systems, such as several cluster file
systems [6, 19, 30], assume an environment in which all
nodes are at the same distance from each other. But, as
soon as the system scales beyond a single subnet, as is the
case in the Prognosfs example, a Prognos may become
useful. Also, in the wide-area case, a Prognos does not
necessarily need to involve a large number of hosts across
the Internet: a small number of sites connected to a small
number of strategically located Stones may benefit from
a Prognos as well. This is the case for the Prsync exam-
ple where a small number of Stones enlisted at strategic
locations can allow novel services to be deployed without
edge node cooperation.

In addition to the applications described above, we are
continuing to research many other Prognos-based appli-
cations, including a network-embedded web crawler and
a search engine. In this section, we generalize from these
application studies and discuss some properties of the un-
derlying Prognos. One objective of this section is show
how most concerns related to resource management, secu-
rity and reliability can be met by putting together several
existing techniques.
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Phase no. 1 2 3 4 5 6 7 8
C1 Write C1 C2 C2 C3 C1, C2 C2, C3 C1, C2, C3

(s) (s) (s) (s) (s) (s) (s) (s)
Forward 12:11:33 5:31 8:34 7:34 8:33 9:35, 14:39 11:37, 11:36 16:45, 26:51, 25:50
Cache 11:8:32 5:27 8:34 3:20 3:20 5:27, 3:20 4:26, 4:26 5:28, 4:26, 4:26
Distribute 11:13:33 5:30 33:73 3:21 3:21 5:31, 3:21 4:25, 4:25 5:30, 4:25, 4:25

Table 4: Results from the MMAB file-system level benchmark.

4.1 Resource Management and Security

The three key players in resource management are:
the Stone Operating System (SOS), the service running
on a Prognos, and the user of the service. In general,
the user trusts the service, which in turn trusts the SOS.
The SOS must protect different services from each other
on a Stone; the distributed participants implementing the
same service on multiple Stones must be able to authen-
ticate each other; and the service must implement its own
application-specific protection to protect its users from
each other. We discuss each of these issues in turn.

One simple way of insulating the multiple services,
which run on a Stone simultaneously, from each other is to
employ one process per service per allocated Stone. Such
a daemon is present as long as the service is up. Code
specific to each service is executed within its own sep-
arate address space. Alternatives that are more efficient
than the process model also exist. These include software-
based fault isolation [32] and safe language-based exten-
sions [9]. A Stone persistent storage partition is allocated
exclusively to the service at service launch time. All other
resources on a node must be accounted for as well. Re-
source accounting abstractions that are more precise than
the process model, such as “resource containers” [7], may
be needed. Existing network-wide resource arbitration
mechanisms [11, 12, 29, 36] can be used to account for
resources on a Prognos-wide scale.

All the participants that collaborate in a Prognos to im-
plement a particular service, such as Stones allocated to
this service and the processes on edge machines belong-
ing to the service provider, must be able to authenticate
each other. Existing cryptographic techniques for authen-
tication, secure booting, and secure links can be used for
this purpose [34, 17].

The codes that implement different services can
choose their own means of authenticating their users.
Application-specific access control and resource manage-
ment is entirely left to individual services.

In practical terms, we understand that many may point
at the absence of a single truly secure operating sys-
tem today and be skeptical about the prospect of service
providers vesting enough trust in a Prognos infrastruc-
ture. We believe that there are at least four reasons to be
more optimistic. First, while programmable, the amount
of functionality supported by an SOS is likely to be far

more restrictive than that of a general operating system.
We therefore conjecture that it is likely easier to engineer
a secure SOS.

Second, we envision a Prognos to be administered in a
more access-controlled manner than the current free-for-
all Internet. Thestorage consumers,who are the direct
clients of a Prognos, are distinct from the more general
public who are theservice consumers. Abusive behav-
iors might be more tractable when identities of the storage
consumers are tracked. Such an access control system,
however, need not impact the generality or flexibility of a
Prognos.

Third, the Prognos approach does not necessarily im-
ply time-sharing the Stones among multiple services. It
is possible to have a restricted resource allocation policy
that allocates dedicated Stones to services, thus avoiding
the complexities, overheads and pitfalls associated with
time-sharing.

Fourth, there are more restrictive deployment models
of a Prognos that may further reduce its security risks.
One example is a small-scale deployment that is man-
aged by a single administrative domain where accesses to
the network resources can be more strictly controlled and
monitored. Another possibility is the use of a separate
dedicated Prognos backbone network that is not available
for public consumption. This backbone in effect becomes
a “backplane” connecting a set of “core” Stones. The gen-
eral public, or the service users, connect to the core via a
distinct public network using a distinct service consumer
interface. Of course, the service implementors are still re-
sponsible for “correctly” implementing their services and
policing their service users; but at least the service users
are prevented from committing mischief directly on the
backplane. This is in spirit similar to how several clus-
ter file systems can turn themselves into scalable legacy
file servers [6, 19, 30]: a set of core cluster machines are
connected by a secure private network that shoulders the
intra-cluster protocol traffic while legacy clients connect
to the core using a legacy protocol (such as NFS) on a
different public network.

4.2 Reliability of Embedded-Storage

One question that the implementor of a Prognos must
face is: What reliability guarantee does the system pro-
vide for the embedded persistent data (and whether the
Stones must be backed up by tapes)? There are several
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possible answers to the question.
The first possible answer is not unlike the one pro-

posed in a recent position paper [8]: it proposes that
network-embedded storage may provide a “best effort”
service whose reliability can only be characterized sta-
tistically and it is the responsibility of the edge storage
consumers to cope with the potential loss of embedded
persistent data in a way that is in spirit similar to how
packet losses in a network are dealt with today. The au-
thors pose the question of whether such limited-duration
storage is useful. We believe that the answer is yes and
the Prsync application is an example: the loss of any ver-
sion of data stored on a Stone is not catastrophic and the
edge producer is the last resort of any data.

The second possible answer is that it is the respon-
sibility of the application-specific code injected into the
Stones to provide redundancy (if any) inside a Prognos in
a way that is under the exclusive control of the individual
applications. The injected code would determine, for ex-
ample, what redundancy scheme to use and which Stones
to store the redundancy information on. The application
may choose to treat different types of data differently and
different Stones differently.

The third possible answer moves the responsibility of
ensuring a certain degree of reliability into a “middle-
ware” layer above Prognos. One example of such a sys-
tem is an incarnation of the Prognosfs file system that, for
example, always maintains replicas on at least two Stones
or at two sites. By sacrificing some flexibility available at
the Prognos layer, an application that runs on top of the
file system layer may enjoy greater ease of programming.

In general, we believe that a Prognos should allow
the storage consumers to pay the price of reliability only
when they need it, and in a way of their own choosing.

5 Prognos Prototype

In this section, we describe a simple prototype Prog-
nos on which the described applications run.

5.1 The SOS

Our prototype implementation uses the “process
model” to run multiple services concurrently—on each
Stone, code for a service is run in a separate daemon pro-
cess. The service daemons request resources from the
SOS, which is implemented as a simple Linux user-level
process. One of the chief aims of building this proto-
type is to have a vehicle with which we can experiment
with several Prognos-based applications and demonstrate
the utility of the Prognos approach. To this end, we have
not started with a potentially more efficient kernel-based
or language-based implementation, nor have we provided
any of the security mechanisms discussed in the previous
section. We also anticipate the SOS interface to evolve in
an ongoing application-driven process.

5.2 Code Injection

Service-specific code is injected into the Prognos at
service launch time. Updating code requires re-starting
the service. The Prognos supports an interface to allow
services to inject code in native binary format. The code
fragments injected into different Stones might be different
because they may be tailor-made for Stones at different
locations in the network.

5.3 Persistent Storage

Each service is allocated a separate storage partition
on each participating Stone at service launch time. At
each Stone, storage is available in three alternative forms,
and a service is free to choose one or even switch among
them. The alternatives are: (1) A raw disk partition in-
terface that is essentially the Linux/dev/raw/ inter-
face. (2) A logical disk interface that is similar to sev-
eral existing ones [15]. A user of this interface can read
and write blocks that are keyed by their 64-bit logical ad-
dresses. This interface is useful for those who desire a
block-level interface but do not care to explicitly man-
age their own storage layout. Our implementation is log-
structured. Prognosfs uses this interface. (3) A subset of
the Linux local file system interface. Prsync uses this in-
terface.

5.4 Connectivity

The communication links between Stones can be ei-
ther physical or virtual. The current SOS implementa-
tion enforces no resource arbitration mechanisms such as
proportional bandwidth sharing [36], which we plan to
add. The SOS also needs to be able to provide local con-
nectivity information in the form of, for example, the set
of neighboring Stones, and estimates of pair-wise band-
width, latency and loss-rate.

5.5 Location Service

Our prototype includes an efficient, network-aware
object location service to track copies of objects in a set
of participating Stones. We refer to it as Canto (Coherent
And Network-aware Tracking of Objects). Canto is heav-
ily used by Prognosfs. It is designed as a network-aware
generalization of the manager-based approach commonly
used in cluster-based systems [6, 19, 30]. In these sys-
tems, each object has a designated manager to track all
the copies of the object. This approach works well when
all nodes are at equal distance from each other, as in a
cluster-based system. When the network grows larger, or
when the topology becomes more complex, the simplistic
manager-based approach becomes inefficient.

Canto maintains a topology-sensitive tree of nodes.
Object location requests are always routed along the edges
of this tree. As copies of an object are created, state is
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added to the tree to keep track of the copies. Canto re-
quires per node routing state that can be proportional to
the product of the number of objects and the number of
neighboring nodes. For this reason, Canto stores most
of this routing state on disks and uses a memory buffer
for caching and write-behind. In effect, Canto trades disk
storage of routing state for reduced usage of wide-area
networks and better performance.

Canto allows services (like Prognosfs) to make their
own arbitrary object placement decisions. This is of-
ten difficult to achieve in location services based on dis-
tributed hash tables (DHTs) [28, 26], where hashing algo-
rithms dictate the placement of objects, thereby allowing
a DHT-based system to scale to extremely large number
of nodes. Prognos has more modest scalability require-
ments: a small number of Stones enlisted at strategic loca-
tions is sufficient to deploy novel services such as Prsync.
Canto works well for such modest-sized systems.

Another important property of Canto is that it isself-
synchronizing: it preserves the integrity and consistency
of its data structures during concurrent read and write op-
erations without resorting to any external locking mech-
anism or fixed serialization points. Due to lack of space,
we refer the reader to [35] for further details.

5.6 Lock Service

Another generic service that is likely to be useful for
more than one Prognos-based applications is a distributed
lock manager (DLM). For example, Prognosfs uses the
DLM to synchronize its access to distributed storage. The
DLM provides multiple-reader/single-writer locks to its
clients. Locks are sticky so a client retains the lock until
some other client requests a conflicting one. Interestingly,
the mechanism for caching and invalidating lock state on
distributed nodes is a special case of caching and invali-
dating generic objects inside the Prognos. Since caching
and invalidation are handled by Canto, the DLM simply
becomes an application of Canto.

6 Related Work

Many active network prototypes have been built [2,
16, 22, 33]. Prognos shares their goal of allowing new
services to be loaded into the infrastructure on demand.
Most active networking efforts to date, however, have
consciously avoided tackling persistent storage inside the
network. This decision typically limits the injected intel-
ligence to those related to low-level forwarding decisions.
By embracing embedded storage, Prognos makes it pos-
sible for services to inject high-level intelligence that is
qualitatively different and more sophisticated.

In a DARPA proposal [21], Nagle proposes “Ac-
tive Storage Nets,” which are active networks applied
to network-attached storage. In this proposal, active
routers may implement storage functions such as striping,

caching, and prefetching of storage objects, and quality-
of-service responsibilities of I/O operations. “Logistical
Networking”, a system proposed in a recent SIGCOMM
position paper [8], argues for an IP-like embedded stor-
age infrastructure that allows arbitrary packets to manip-
ulate the embedded storage using a fixed low-level inter-
face. In our experience, applications such as Prsync and
Prognosfs can fully benefit from the embedded storage
only when application-specific intelligence, which could
be more sophisticated than conventional caching of ob-
jects, is co-located with embedded storage.

Active technologies have been successfully applied
to applications such as web caching [10] and media
transcoding [3]. We hope to generalize these approaches
for a wider array of applications that can benefit from
network-embedded programmable storage. Active tech-
nologies have also been successfully realized in the con-
text of “Active Disks” [1, 25]. One important difference
between Active Disks and Prognos is that the intelligence
in the former is at the “ends” of the network while in the
latter case, it is embedded “inside” the network.

The applications, Prsync and Prognosfs, represent ex-
tensions to previous work that is either limited to client-
server settings or lacks customizability. LBFS [20] is a
client/server file system that employs a checksum-based
algorithm to reduce network bandwidth consumption in a
way that is analogous to rsync. By using the Prognos in-
frastructure, Prsync extends this approach to fully exploit
multiple peer Stones and their network-awareness. Prog-
nosfs is similar to Petal/Frangipani [19, 30] in its break
down of the file system into three components: clients,
a distributed lock manager, and a distributed virtual disk
(DVD), but it improves upon existing cluster file systems
that possess little network awareness [6, 19, 30]. The most
novel part of Prognosfs lies within its DVD—the DVD
consists of a number of peer Stones, each of which can be
customized for a specific environment.

7 Conclusion

We describe two applications that gain signifi-
cant performance and functionality benefits by using a
clever combination of the programmability and network-
awareness of network-embedded storage. These applica-
tions qualitatively and quantitatively show that such com-
bination is necessary to exploit the full power of embed-
ded storage. They are also evidence to support our be-
lief that the benefits of such combination are not limited
to content-distribution networks, but extend to many con-
ventional applications too. The applications run on our
prototype Prognos system that currently works on LAN
clusters and wide-area PlanetLab-like overlay networks.
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