
CS 126 Lecture S5:
Networking

CS126 24-1 Randy Wang

Outline

• Introductions

• Connectivity

• Naming and addressing

• Abstractions and layering

• Example: socket programming

• Conclusions

CS126 24-2 Randy Wang

Review: Technology Advances

• Expensive machines, cheap humans

• Cheap machines, expensive humans

• (Almost) free machines, really expensive humans, and
communities

1981 1999 Factor

MIPS 1 1000 1,000

$/MIPS $100K $5 20,000

DRAM Capacity 128KB 256MB 2,000

Disk Capacity 10MB 50GB 5,000

Network B/W 9600b/s 155Mb/s 15,000

Address Bits 16 64 4

Users/Machine 10s <= 1 < 0.1

CS126 24-3 Randy Wang

The Network is the Computer
• Relentless decentalization trend
- Over the years, machines have and will continue to become
smaller, cheaper, and more numerous: mainframes -> mini
computers -> personal computers -> palm computers ->
ubiquitous (embedded, not necessarily general-purpose)
computers

- Computers are intrinsically social animals: as we have more of
them, their need to “talk” to each other becomes more
imperative

• Why do computers need to talk to each other? The focus
has shifted over the years
- Efficient use of machine resources
- Sharing of data
- Use parallelism to solve bigger problems faster
- Ultimate killer app: enabling humans to communicate with
each other

CS126 24-4 Randy Wang

The Network is the Computer (cont.)

• Networks are everywhere and they are converging
- SAN, LAN, MAN, WAN
- All converging towards a similar switched technology

• New chapter of every aspect of computer science
- Re-examine virtually all the issues that we looked at in this
class in the context of distributed systems or parallel systems

• This is only the beginning!

CS126 24-5 Randy Wang

Outline

• Introductions

• Connectivity

• Naming and addressing

• Abstractions and layering

• Example: socket programming

• Conclusions

CS126 24-6 Randy Wang

Directly Connected

• (a) point-to-point: ATM

• (b) multiple-access: ethernet, FDDI

• Can’t build a network by requiring all nodes are directly
connected to each other: scalability in terms of the number
of wires or the number of nodes that can attach to a shared
media

CS126 24-7 Randy Wang

Switched Network

• Circuit switching vs. packet switching

• hosts vs. “the network”, which are made of switches

• Nice property: scalable aggregate throughput

hosts

switches

CS126 24-8 Randy Wang

Interconnection of Networks

• Recursively building larger networks

hosts

gateway

CS126 24-9 Randy Wang

Some Hard Questions

• How do hosts share links?

• How do you name and address hosts?

• Routing: given a destination address, how do you get to it?

CS126 24-10 Randy Wang

Sharing a Link

• Chop up each “flow” into “packets” (packet switching)

• Bandwidth is allocated to each flow on-demand at the
granularity of packets

• Key challenges: fairness, congestion control, QoS

CS126 24-11 Randy Wang

Outline

• Introductions

• Connectivity

• Naming and addressing
- DNS: Domain Name System

• Abstractions and layering

• Example: socket programming

• Conclusions

CS126 24-12 Randy Wang

IP Addresses and Host Names

• Each machine is addressed by a 32-bit integer: IP address
- We will tell you what “IP” is later
- Ran out of numbers and there’re schemes to extend that

• An IP address
- Written down in a “dot notation” for “ease” of reading such as
“128.112.136.19”

- Consists of a network address and a host ID

• IP addresses are the universal IDs that are used for
everything, including routing

• For convenience, each host also has a human-friendly host
name: for example “128.112.136.19” is
“sequim.cs.princeton.edu”

• Question: how do you translate names to IP addresses

CS126 24-13 Randy Wang

Domain Hierarchy

• Initially name-to-address mapping was a flat file mailed
out to all the machines on the internet!

• Now we have a hierarchical name space, just like a Unix
file system tree

• Top level names: historical influence: heavily US centric,
government centric, and military centric view of the world

CS126 24-14 Randy Wang

DNS Zones and Name Servers

• Divide up the name hierarchy into zones

• Each zone corresponds to one or more name servers under
a single administrative control

CS126 24-15 Randy Wang

Hierarchy of Name Servers

• Clients send queries to name servers

• Name servers reply with answer, or forward requests to
other name servers

• Most name servers also perform lookup caching

CS126 24-16 Randy Wang

Outline

• Introductions

• Connectivity

• Naming and addressing

• Abstractions and layering

• Example: socket programming

• Conclusions

CS126 24-17 Randy Wang

Application-Level Abstraction

• What you have: hop-to-hop links, multiple routes, packets,
can be potentially lost, can be potentially delivered out-of-
order

• What you may want: application-to-application (end-to-
end) channel, communication stream, reliable, in-order
delivery

CS126 24-18 Randy Wang

OSI Architecture

• Physical: handles bits
• Data link: provides “frames” abstraction
• Network: handles hop-to-hop routing, at the unit of packets
• Transport: provides process-to-process semantics such as in-order-

delivery and reliability, at the unit of messages
• Top three layers are not well-defined, all have to do with application

level abstractions such as transformation of different data formats

CS126 24-19 Randy Wang

Reality: the “Internet” Architecture

• Protocols: abstract objects that makeup a layer
• Lowest level: hardware specific, implemented by a combination of

network adaptors and OS device drivers
• IP (Internet Protocol): focal point of the architecture, provides host-to-

host connection, defines common method of exchanging packets
• TCP (Transmission Control Protocol): reliable, in-order stream
• UDP (User Datagram Protocol): unreliable messages (maybe faster)
• On top of those are the application protocols
• Not-strictly layered, “hour-glass shape”, implementation-centric

CS126 24-20 Randy Wang

Outline

• Introductions

• Connectivity

• Naming and addressing

• Abstractions and layering

• Example: socket programming

• Conclusions

CS126 24-21 Randy Wang

Socket Interface

• Originated in BSD Unix
• One of the most widely-supported internet programming

interfaces today
• A socket is an application-to-application channel
• Example program: half of a chat program

CS126 24-22 Randy Wang

Java Chat

• To compile:
javac Client.java Server.java

• To run:
- In a window of the (any) server machine, type:

java Server

- In a window of the (any) client machine, type:
java Client name_of_the_server_machine

• In the client window, just type away and you should see the
messages echoed on the server window

• I’m going to omit some details having to do with error
handling, real code on the lecture web page

• I will also put up an equivalent C version, which exposes a
little more detail that the Java version hides

CS126 24-23 Randy Wang

Client Code
Socket socket; String host;

BufferReader stdIn; String fromUser;

...

socket = new Socket(host, 5432);

out = new PrintWriter(socket.getOutputStream(), true);

BufferedReader stdIn = new BufferedReader(new

 InputStreamReader(System.in));

while ((fromUser = stdIn.readLine()) != null)

 out.println(fromUser);

1

2
3

4

5

1.Variable declarations
2.Creating a socket to the machine named by “host”, at port number 5432
3.Makes an output stream from the socket so now the socket behaves just

like the terminal screen
4.“stdIn” is an input stream from the keyboard
5.As long as the user types some input, it gets written to the socket

CS126 24-24 Randy Wang

Server Code

1.Variable declarations
2.Creates a server socket that patiently waits for a client to connect
3.When a client connects to the server, this line returns a new socket for

communicating to the client, leaving the old server socket waiting for
other clients

4.Makes an input stream out of the client socket so it’s just like a keyboard
5.As long as we get inputs from the client socket, we print it out
6.Destroy the client socket

ServerSocket serverSocket = null, clientSocket = null;
BufferedReader in = null; String inputLine;
serverSocket = new ServerSocket(5432);
...
while (true) {

clientSocket = serverSocket.accept();
in = new BufferedReader(new InputStreamReader

(clientSocket.getInputStream()));
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);
clientSocket.close();

}

1
2

3
4

5
6

CS126 24-25 Randy Wang

Outline

• Introductions

• Connectivity

• Naming and addressing

• Abstractions and layering

• Example: socket programming

• Conclusions

CS126 24-26 Randy Wang

Closing Thoughts
• Historical perspective
- Review: we said that the stuff we talked about in the OS
lecture is nothing more than a point in time,

- well same is true with the networking lecture
• Trends
- Faster: bandwidth is increasing enormously, but latency is
insurmountable--speed of light constraint

- Ubiquitous: peripheral devices, backplane of super-computers
- Ubiquitous: cheap personal and embedded devices
- Ubiquitous: universal and global connectivity
- Wireless
- Mobile

• Challenges: parallel and distributed systems add a new
dimension to everything in CS: programming, hardware,
theory, systems, and applications

• It’s an exciting time to be in computer science!

