CS 126 Lecture T6: NP-Completeness

- Introduction: polynomial vs. exponential time
- P vs. NP: the holy grail
- NP-Completeness: Cook's Theorem
- NP-Completeness: Reduction
- Conclusions

Where We Are

- T1 T4:
 - <u>Computability</u>: whether a problem is solvable at all
 - Bad news: "most" problems are not solvable!
- T5 T6:
 - <u>Complexity</u>: how long it takes to solve a problem
 - Bad news: many hard problems take so long to solve that they are almost as bad as non-solvable!
- Tuesday:
 - **Examples** of "fast" vs. "slow" algorithms
- Today:
 - <u>Classes</u> of problems depending on how "hard" they are

CS126

"Efficient" vs. "Inefficient" Examples

- Sorting: *O*(*N***LogN*)
- TSP: *O*(*N*!)
 - * TRAVELING SALESPERSON
 - A salesperson needs to visit N cities.
 - Is there a route of length less than d?
- Who cares?
 - How long does it take to do TSP(1000)?
 - How big is 1000!?

Some Numbers10~18PC instructions/second10~12supercomputer instructions/second10~12supercomputer instructions/second10~13age of universe in years (estimated)10~13age of universe in the universe10~13age of universe in the universe1000300791210030012139121003001213912139121313121313121313121313121313121213121212121212121212121212	> 10
--	------

- Introduction: polynomial vs. exponential time
- <u>P vs. NP: the holy grail</u>
- NP-Completeness: Cook's Theorem
- NP-Completeness: Reduction
- Conclusions

Possible Exception: Quantum Computing

- Quantum mechanics: "coherent superposition"
 - A photon can be "here" and "there" simultaneously
 - An atom can be in two electronic states simultaneously
 - In general, a "qubit" can be 0 and 1 simultaneously!
 - A k-bit quantum register can store 2^k values simultaneously!

Quantum computing

- A single quantum instruction, effected by a laser pulse, for example, can transform a quantum register from one multi-state to another in one step
- A classical computer needs 2^K steps or 2^K parallel registers to match this power
- Non-determistic TM: no more power than TM, but a lot faster than a determistic TM

- Introduction: polynomial vs. exponential time
- P vs. NP: the holy grail
- <u>NP-Completeness: Cook's Theorem</u>
 - A digression in logic
 - The very first NP-Complete problem
- NP-Completeness: Reduction
- Conclusions

A Puzzle

A Digression in Logic

- Classical logic had its origin in Aristotle
- Turing Machine was invented to settle whether logic satisfiability was solvable
- FSAs and PDAs were developed as simplifications of TMs
- History: perfect reversal of our presentation

Propositional Logic and Satisfiability Proof

<u>Representation</u> :	Proof:		
Th: Today is Thursday	Assume Fr',		
Fr: Tomorrow is Friday	Th * (Th->Fr) * Fr'		
Th and Fr can be 0 or 1	= Th * $(Th'+Fr)$ * Fr'		
<u>Given</u> :			
Th	There is no assignment		
Th $->$ Fr	of Th and Fr that can		
Prove:	make this formula true,		
Fr	so assumption must be wrong.		
Fr	so assumption must be wrong		

- Like the boolean algebra that we have learned
- Extension to "predicate calculus" to make it more powerful
- A powerful language for describing real world processes
- A darling artificial intelligence tool

A More Complex Example: The Puzzle

<u>Representation:</u>

 $M_i=0$, if Man is on left bank at time i $M_i=1$, if Man is on right bank at time i Similarly define W_i , G_i , and C_i for Wolf, Goat, and Cabbage.

<u>Given:</u>

$$M_{0}=W_{0}=G_{0}=C_{0}=0$$

$$M_{i}'W_{i}'G_{i}'C_{i}' \rightarrow M_{i+1}W_{i+1}'G_{i+1}C_{i+1}'$$

$$M_{i}'W_{i}'G_{i}'C_{i} \rightarrow M_{i+1}W_{i+1}G_{i+1}'C_{i+1}'$$

$$M_{i}W_{i}G_{i}'C_{i} \rightarrow M_{i+1}'W_{i+1}'G_{i+1}'C_{i+1}'$$
....(many more similar rules)

Prove:

$$M_k = W_k = G_k = C_k = 1$$

(for some sufficiently large k)

Proof:

Similar as previous slide, assignment of M_i , W_i , G_i , C_i gives solution

CS126

What's the Relevance of This Puzzle? Propositional and Predicate Calculi as Descriptions of Computational Processes

- The puzzle is really a computational process
 - The initial locations of the man, wolf, goat, and cabbage are the input state
 - The movement rules are a program:
 - + for each current state,
 - + non-deterministically apply one of the applicable rules
 - + transform to next state
 - The final locations: the desired output state
- If we can find a variable assignment to make the corresponding logic formula true, we have found a solution to the problem

Cook's Theorem

- A non-deterministic TM with its input is like a puzzle
- We can encode it with a logic formula like we did
- If we can find a variable assignment to make the formula true, we have found a solution to the puzzle, namely a simulation of the TM that solves the problem
- Therefore, if we can solve SATISFIABILITY quickly, then we can find solutions to non-determistic TMs quickly
- Any NP problem can be solved by a non-determistic TM by definition
- Therefore, if we can solve SATISFIABILITY quickly, we can solve any NP problem quickly
- SATISFIABILITY is the very first problem proven to be NP-Complete: a landmark theorem!

In Other Words ...

- An NP problem = An instance of non-deterministic TM = A SATISFIABILITY problem
- A solution to an NP problem = A successful simulation of the non-deterministic TM = A solution to the SATISFIABILITY problem
- Therefore, if we can solve SATISFIABILITY quickly, we can solve any NP problem quickly
- Now that we have found our first NP-Complete problem, are there others?

- Introduction: polynomial vs. exponential time
- P vs. NP: the holy grail
- NP-Completeness: Cook's Theorem
- <u>NP-Completeness: Reduction</u>
 - The basic idea: to show a problem is NP-Complete, we show it's "harder" than SATISFIABILITY
- Conclusions

Reduction

For specific problems A and B, we can often shov If A can be solved efficiently, then so can B (if so, we say that B "REDUCES TO" A)

To prove a problem A to be NP-complete * prove it to be in NP * prove that some NP-complete problem B reduces to A

That is, if A can be solved efficiently, then * B can be solved efficiently * so can every problem in NP

Any logic formula can also be expressed as a product-of-sums form

More NP-Complete Problems

* TRAVELING SALESPERSON

A salesperson needs to visit N cities.

Is there a route of length less than d?

* SCHEDULING

A set of jobs of varying length need to be done on two identical machines before a certain deadline. Can the jobs be arranged so that the deadline is met?

* SEQUENCING

A set of four-character fragments have been obtained by breaking up a long string into overlapping pieces. Can the fragments be reconstituted into the long string?

- Introduction: polynomial vs. exponential time
- P vs. NP: the holy grail
- NP-Completeness: Cook's Theorem
- NP-Completeness: Reduction
- <u>Conclusions</u>

Coping With NP-Completness	* Hope that the worst case doesn't occur (try to simulate Lucky Guessing)	Change the problem (try for an approximate solution)	Exploit NP-completeness (example: cryptography)	trying to prove that P=NP!
Coping	* Hope that . (try to s	* Change the pi (try for an	* Exploit NP-0 (example:	* Keep trying to

What We Have Learned Today

- What are P, NP, NP-Complete problems? What are their relationships?
- What's Cook's Theorem?
- What's reduction?