CS 126 Lecture T6: NP-Completeness

Outline

- Introduction: polynomial vs. exponential time
- P vs. NP: the holy grail
- NP-Completeness: Cook's Theorem
- NP-Completeness: Reduction
- Conclusions

Where We Are

-T1-T4:

- Computability: whether a problem is solvable at all
- Bad news: "most" problems are not solvable!
-T5-T6:
- Complexity: how long it takes to solve a problem
- Bad news: many hard problems take so long to solve that they are almost as bad as non-solvable!
- Tuesday:
- Examples of "fast" vs. "slow" algorithms
- Today:
- Classes of problems depending on how "hard" they are

The "Good" vs. the "Bad"

- A given problem can be solved by many different algorithms, but some algorithms are far more efficient than others.

EFFICIENT:

"polynomial" time (ex: $N \wedge^{2}$) for ALL inputs INEFFICIENT:
"exponential" time (ex: $2^{\wedge} N$) for sOME inputs

"Efficient" vs. "Inefficient" Examples

- Sorting: $O\left(N^{*} \log N\right)$
- TSP: $O(N!)$

* TRAVELING SALESPERSON

A salesperson needs to visit N cities. Is there a route of length less than d?

- Who cares?
- How long does it take to do TSP(1000)?
- How big is 1000 !?
12
O
H
*

O
H
m
H
O
H

* $\stackrel{9}{n}$
O
H
$\hat{\wedge}$
dooh/SPuosos
number of electrons in the
(P p+om!+so)

Exponential growth dwarfs technological change:
$10^{09} 9$ seconds/year
10013 age of universe in years (estimated)
10^{0079} number of electrons in the universe
(estimated)

Outline

- Introduction: polynomial vs. expenential time
- P vs. NP: the holy grail
- NP-Completeness: Cook's Theorem
- NP-Completeness: Reduction
- Conclusions
Polynomial Time

Ex:
Ex:

Another NP Example: CLIQUE

Given N people, does there exist a group of size k such that every pair of people in the group know each other?

Another NP Example: Satisfiability

Is there a way to assign truth values to a given logical formula that makes it true?

Ex:

satisfiability: can verify that
$\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)(y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$ is 1 if x, y, z, are $1,1,0$ (resp.)

P vs. NP

If a machine can guess (and is lucky), it can solve a problem in NP quickly. Actual computers can simulate Lucky Guessing, in exponential time, by trying every possibility

Possible exception ??
Quantum computers

Possible Exception: Quantum Computing

- Quantum mechanics: "coherent superposition"
- A photon can be "here" and "there" simultaneously
- An atom can be in two electronic states simultaneously
- In general, a "qubit" can be 0 and 1 simultaneously!
- A k-bit quantum register can store 2^{k} values simultaneously!
- Quantum computing
- A single quantum instruction, effected by a laser pulse, for example, can transform a quantum register from one multistate to another in one step
- A classical computer needs 2^{K} steps or 2^{K} parallel registers to match this power
- Non-determistic TM: no more power than TM, but a lot faster than a determistic TM

P = NP? (The Holy Grail)

Which of these diagrams is correct?

- Nondeterminism (Lucky Guessingl scems powerful, but no one has been able to PROVI that it helps for any particular problem.

NP-Completeness

NP-Complete

A problem in NP with the property that if it can be solved efficiently, then $P=N P$.
(Lucky Guessing doesn't help.)

Outline

- Introduction: polynomial vs. expenential time
- P vs. NP: the holy grait
- NP-Completeness: Cook's Theorem
- A digression in logic
- The very first NP-Complete problem
- NP-Completeness: Reduction
- Conclusions

A Puzzle

A Digression in Logic

- Classical logic had its origin in Aristotle
- Turing Machine was invented to settle whether logic satisfiability was solvable
- FSAs and PDAs were developed as simplifications of TMs
- History: perfect reversal of our presentation

Propositional Logic and Satisfiability Proof

```
Representation:
    Th: Today is Thursday
    Fr: Tomorrow is Friday
    Th and Fr can be 0 or 1
Given:
    Th
    Th -> Fr
Prove:
    Fr
```

 Assume \(\mathbf{F r}{ }^{\prime}\),
 Th * (Th->Fr) * Fr'
 $=T h *(T h ' F r) * F r^{\prime}$

There is no assignment
of Th and Fr that can
make this formula true,
so assumption must be wrong.

- Like the boolean algebra that we have learned
- Extension to "predicate calculus" to make it more powerful
- A powerful language for describing real world processes
- A darling artificial intelligence tool

A More Complex Example: The Puzzle

Representation:

$M_{i}=0$, if Man is on left bank at time i
$M_{i}=1$, if Man is on right bank at time i Similarly define W_{i}, G_{i}, and C_{i} for Wolf, Goat, and Cabbage.
Given:

$$
\begin{aligned}
& M_{0}=W_{0}=G_{0}=C_{0}=0 \\
& M_{i}^{\prime} W_{i}^{\prime} G_{i}^{\prime} C_{i}^{\prime} \quad \rightarrow M_{i+1} W_{i+1}{ }^{\prime} G_{i+1} C_{i+1}^{\prime} \\
& M_{i}^{\prime} W_{i}^{\prime} G_{i}^{\prime} C_{i} \rightarrow>M_{i+1} W_{i+1} G_{i+1}{ }^{\prime} C_{i+1}^{\prime} \\
& M_{i} W_{i} G_{i}^{\prime} C_{i} \rightarrow M_{i+1}^{\prime} W_{i+1}^{\prime} G_{i+1}^{\prime} C_{i+1}^{\prime} \\
& \ldots \text { (many more similar rules) }
\end{aligned}
$$

Prove:
$\mathrm{M}_{\mathrm{k}}=\mathrm{W}_{\mathrm{k}}=\mathrm{G}_{\mathrm{k}}=\mathrm{C}_{\mathrm{k}}=1$
(for some sufficiently large \mathbf{k})
Proof:
Similar as previous slide, assignment of $M_{i}, W_{i}, G_{i}, C_{i}$ gives solution

What's the Relevance of This Puzzle? Propositional and Predicate Calculi as Descriptions of Computational Processes

- The puzzle is really a computational process
- The initial locations of the man, wolf, goat, and cabbage are the input state
- The movement rules are a program:
+ for each current state,
+ non-deterministically apply one of the applicable rules
+ transform to next state
- The final locations: the desired output state
- If we can find a variable assignment to make the corresponding logic formula true, we have found a solution to the problem

Cook's Theorem

- A non-deterministic TM with its input is like a puzzle
- We can encode it with a logic formula like we did
- If we can find a variable assignment to make the formula true, we have found a solution to the puzzle, namely a simulation of the TM that solves the problem
- Therefore, if we can solve SATISFIABILITY quickly, then we can find solutions to non-determistic TMs quickly
- Any NP problem can be solved by a non-determistic TM by definition
- Therefore, if we can solve SATISFIABILITY quickly, we can solve any NP problem quickly
- SATISFIABILITY is the very first problem proven to be NP-Complete: a landmark theorem!

In Other Words ...

- An NP problem = An instance of non-deterministic $\mathrm{TM}=$ A SATISFIABILITY problem
- A solution to an NP problem $=$ A successful simulation of the non-deterministic $\mathrm{TM}=$ A solution to the SATISFIABILITY problem
- Therefore, if we can solve SATISFIABILITY quickly, we can solve any NP problem quickly
- Now that we have found our first NP-Complete problem, are there others?

Outline

- Introduction: polynomial vs. expenential time
- P vs. NP: the holy grail
- NP-Completeness: Cook's Theorem
- NP-Completeness: Reduction
- The basic idea: to show a problem is NP-Complete, we show it's "harder" than SATISFIABILITY
- Conclusions

Reduction
For specific problems A and B, we can often show If A can be solved efficiently, then so can B (if so, we say that B "REDUCES TO" A)

- To prove a problem A to be NP-complete
* prove it to be in NP
* prove that some NP-complete problem B reduces to A
- That is, if A can be solved efficiently, then
* B can be solved efficiently
* so can every problem in NP

An NP-Complete Example: CLIQUE

Given N people, does there exist a group of size k such that every pair of people in the group know each other?

Proving CLIQUE Is NP-Complete

- We have already shown CLIOUE is NP
- Now we will show SATISFIABILITY reduces to CLIOUE
- Given an instance of SAT. we construct an instance of CLIQUE that has a solution if and only if the SAT instance is satisfiable
- (A note)
- We have seen that any logic formula can be expressed as a sum-of-products form
- Any logic formula can also be expressed as a product-of-sums form

Transforming SAT to CLIQUE

- Associate a person with each variable occurrence in each clause
- Two people "know" one another EXCEPT if * they come from the same clause
* they represent + and t^{+}for some +

$$
e x:\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)(y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right.
$$

Solution to CLIQUE = SOLUTION to SAT

- Solution to SAT ==> solution to CLIQUE
- Solution to CLIQUE ==> solution to SAT
- So, CLIQUE is NP-Complete

More NP-Complete Problems

Thousands of problems have been shown to be NP-complete in this way.

- If any one of these important problems can be solved efficiently, they all can.
(Morcover, so can any problem in NP).

More NP-Complete Problems

* TRAVELING SALESPERSON

A salesperson needs to visit \mathbf{N} cities. Is there a route of length less than d ?

* SCHEDULING

A set of jobs of varying length need to be done on two identical machines before a certain deadline. Can the jobs be arranged so that the deadline is met?

* sequencing

A set of four-character fragments have been obtained by breaking up a long string into overlapping pieces. Can the fragments be reconstituted into the long string?

Outline

- Introduction: polynomial vs. exponential time
- P vs.NP: the holy grait
- NP-Completeness: Cook's Theorem
- AP-Completeness: Reduction
- Conclusions
Implications of NP-Completeness
Either:
Conventional machines can do as well as
machines capable of Lucky Guessing, but we
ont know how to make them do so. ($P=N P$)
Lucky Guessing DOES help, but is a fiction or
conventional machines, since none of the
NP-complete problems can be solved in
polynomial time. (P! $=N P$)
Not many people believe that $P=N P$
...but it's possible.
Coping With NP-Completness
occur
* Hope that the worst case doesn't
(try to simulate Lucky Guessing)
* Change the problem
(try for an approximate solution)
* Exploit NP-completeness
* Keep trying to prove that $P=N P$!

What We Have Learned Today

- What are P, NP, NP-Complete problems? What are their relationships?
- What's Cook's Theorem?
- What's reduction?

