CS 126 Lecture T6:
NP-Completeness




Outline

e Introduction: polynomial vs. exponential time

* P vs. NP: the holy grall

* NP-Completeness: Cook’s Theorem
* NP-Completeness: Reduction

* Conclusions
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Where We Are

°T1-T4:
- Computability : whether a problem is solvable at all
- Bad news: “most” problems are not solvable!
*T5-T6:
- Complexity: how long it takes to solve a problem

- Bad news: many hard problems take so long to solve that they
are almost as bad as non-solvable!

* Tuesday:
- Examplesof “fast” vs. “slow” algorithms
* Today:
- Classesf problems depending on how “hard” they are
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he “Good” vs. the “Bad”

® A given problem can be solved by many different

algorithms, but some alqorithms are far more

efficient than others.

EFFICIENT:

S T N -

"polynomial” time (ex: N~2) for & inputs

INEFFICIENT:

"exponential” time (ex: 2#N) for SOME inputs
QRN
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“Efficient” vs. “Inefficient” Examples

* Sorting:O(N*LogN)
* TSP:O(N!)

A salesperson needs to visit N cities.
Is there a route of length less than (?

* Who cares?
- How long does it take to do TSP(1000)?
- How big is 1000!?
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Outline

. etion: el s e

e P yvs. NP: the holy gralil

* NP-Completeness: Cook’s Theorem
* NP-Completeness: Reduction
* Conclusions
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Another NP Example: CLIQUE

0.0 0 0. 0.0

O
ONORO,
.i.
ONON

0 0 Ny

Given N people, does there exist a group of
size k such that every pair of people in the
group know ecach other?
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Another NP Example: Satisfiability

Is there a way to assign truth values to
a given logical formula that makes it true?

E:

satisfiability: can verify that
(x' +y ¢ z)ix +y +z)y+2)x +y +2)

is 1 if x, y, 2, are 1, 1, o (resp.)
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P vs. NP

If @ machine can quess (and is lucky),
it can solve a problem in NP quickly.
Actual computers can simulate Lucky Guessing,

B T e R

in exponential time, by trying every possibilit

Possible exception ??
Quantum computers
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Possible Exception: Quantum Computing

* Quantum mechanics: “coherent superposition”
- A photon can be “here” and “there” simultaneously
- An atom can be in two electronic states simultaneously
- In general, a “gubit” can be 0 and 1 simultaneously!
- A k-bit qguantum register can storéalues simultaneously!

* Quantum computing

- A single quantum instruction, effected by a laser pulse, for
example, can transform a quantum register from one multj-
state to another in one step

- A classical computer need§ 8teps or ? parallel registers t
match this power

7

* Non-determistic TM: no more power than TM, but a lot
faster than a determistic TM
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P=NP? (

he Holy Grall)

Which of these diagrams is correct?

K1Y

®

¢ Nondeterminism (Lucky Guessing) seems
powerful, but no one has been able o PROV
that it helps for any particular problem.
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NP-Completeness

P = NP = NP-complete

NP-Complete

A problem in NP with the property that
if it can be solved efficiently,
then P=NP.

(Lucky Guessing doesn't help.)
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Outline

. uetion: Bol Al ve, L time
- PysNPthe-hoely-grall
* NP-Completeness: Cook’s Theorem
- A digression in logic
- The very first NP-Complete problem
* NP-Completeness: Reduction

e Conclusions
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A Puzzle




A Digression in Logic

* Classical logic had its origin in Aristotle

* Turing Machine was invented to settle whether logic

satisfiability was solvable

* FSAs and PDAs were developed as simplifications of |

* History: perfect reversal of our presentation

TMs
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Propositional Logic and Satisfiability Proof

Representation
Th: Today is Thursday
Fr: Tomorrow is Friday
Th and Fr canbeO or 1
Given
Th
Th-> Fr
Prove
Fr

Proof.

AssumeFr ,

Th * (Th->Fr) * Fr’
=Th* (Th'+Fr) * Fr’

There is no assignment
of Th and Fr that can
make this formula true,
S0 assumption must be wrong.

* Like the boolean algebra that we have learned

* Extension to “predicate calculus” to make it more powe
* A powerful language for describing real world process

* A darling artificial intelligence tool

arful
es

CS126

Randy Wang



A More Complex Example: he Puzzle

Representation: B --@-,
M =0, if Man is on left bank at timel . ,f““ FA e SIS ﬁ{,&
M =1, if Man is on right bank at time i ,..f ~
Similarly define W, G ,and C R
for Wolf, Goat, and Cabbage. M .-‘.143‘.._--’;*; " e

Given: Li,@"{ﬁﬂ”ﬁ X gy -

|\/b:\/\6:GO:CO:O

M'W;i'Gi'Ci"->M i1 Wig 'Gisg Gig
M'W;'Gi'Ci ->M 11 Wi Gi1 'Cisg’
M WG\ ’Ci ->M i+1 ’Wi+1 G i+1 C i+1 ’
...... (many more similar rules)

M=W=G =G =1

(for some sufficiently large k)

Proof:
Similar as previous slide, assignment d¥] , W; , G;, C; gives solution
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What's the Relevance of This Puzzle?
Propositional and Predicate Calculi as
Descriptions of Computational Processes

* The puzzle is really a computational process

- The initial locations of the man, wolf, goat, and cabbage &
the input state

- The movement rules are a program:
+ for each current state,
+ non-deterministically apply one of the applicable rules
+ transform to next state

- The final locations: the desired output state

* If we can find a variable assignment to make the

corresponding logic formula true, we have found a solu
to the problem
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Cook’s Theorem

* A non-deterministic TM with its input is like a puzzle
* We can encode it with a logic formula like we did

* If we can find a variable assignment to make the form
true, we have found a solution to the puzzle, namely a
simulation of the TM that solves the problem

* Therefore, if we can solve SATISFIABILITY quickly, the

we can find solutions to non-determistic TMs quickly

* Any NP problem can be solved by a non-determistic T
by definition

* Therefore, if we can solve SATISFIABILITY quickly, we
can solve any NP problem quickly

* SATISFIABILITY is the very first problem proven to be
NP-Complete: a landmark theorem!
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In Other Words ...

* An NP problem =
An instance of non-deterministic TM =
A SATISFIABILITY problem

* A solution to an NP problem =
A successful simulation of the non-deterministic TM =
A solution to the SATISFIABILITY problem

* Therefore, if we can solve SATISFIABILITY quickly, we
can solve any NP problem quickly

* Now that we have found our first NP-Complete problem,
are there others?
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Outline

. etion: Bl ol ol me
* PysNP:-the-holy-grail

- NP-Completeness:-Coek'sFHhesrem

* NP-Completeness: Reduction

- The basic idea: to show a problem is NP-Complete, we
show it's “harder” than SATISFIABILITY

e Conclusions
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Reduction

For specific problems A and B, we can often shoy
If A can be solved efficiently, then so can B
« (if so, we say that B "REDUCES TO" A) }

¢ To prove a problem A to be NP-complete
¥ prove it to be in NP
* prove that some NP-complete problem B
reduces to A

® That is, if A can be solved efficiently, then
* B can be solved efficiently
¥ so can every problem in NP
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An NP-Complete Example: CLIQUE

0.0 0 0. 0.0

O
ONORO,
.i.
ONON

0 0 Ny

Given N people, does there exist a group of
size k such that every pair of people in the
group know ecach other?
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Proving CLIQUE Is NP-Complete

* We have already showtLIQUE is NP

* Now we will showSATISFIABILITY reduces to
CLIOUE

¥ Given an instance of 5AT,
we construct an instance of CLIQUE
that has a solution if and only if
the SAT instance is satisfiable

* (A note)

- We have seen that any logic formula can be expressed ag
sum-of-productsform

- Any logic formula can also be expressed gsoa@uct-of-sums
form

5 d
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ransforming SAT to CLIQUE

XOYG®ZE
X @ ® X
Y @ oM
Z'® ® 7
ORI

e Associate a person with ecach variable
occurrence in each clause

¢ Two people "know' one another EXCEPT if
* they come from the same clause
* they represent + and t' for some +

Eﬁ(x'+q+z](x+q'+z}{q+zl(x'+q'+:§
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Solution to CLIQUE = SOLUTION to SA

XY @0
[

T

@ X
@Y
OK

]
@0

(X'+y+Z)(x+y'+Z)(y+2)(X'+y'+2)

* Solution to SAT==> solution to CLIQUE
* Solution to CLIQUE==> solution to SAT
* So, CLIQUE is NP-Complete
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More NP-Complete Problems

¢ Thousands of problems have been shown to be
NP-complete in this way.

I e

o If any one of these important problems can be
solved efficiently, they all can.

- (Moreover, so can any problem in NP).
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More NP-Complete Problems

* TRAVELING SALESPERSON

A salesperson needs to visit N cities.
Is there a route of length less than d?

* SCHEDULING
BT e e B
A set of jobs of varying length need to be
done on two identical machines before a
certain deadline. Can the jobs be arranged

so that the deadline is met?

*x SEQUENCING
“A set ot four-character fragments have
been obtained by breaking up a long string
into overlapping pieces. Can the fragments
be reconstituted into the long string?



Outline

e Conclusions
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What We Have Learned Today

* What are P, NP, NP-Complete problems? What are their
relationships?

e \What's Cook’s Theorem?

* What's reduction?
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