CS 126 Lecture T5:
Algorithm Design/Analysis

Second Midterm Stats

Mean: 318.8 26.4%
20.5%
12 68%

Median: 29.5

20 20+ 25+ 30+ 35+ 40+ 45+ 50,

F D C B i A+

CS126 18-1 Randy Wang

Outline

e Introduction

* Insertion sort: algorithm

* Insertion sort: performance
* Quick sort: algorithm

* Quick sort: performance

* Conclusions

CS126 18-2

Randy Wang

Where We Are

°T1-T4:
- Computability : whether a problem is solvable at all
- Bad news: “most” problems are not solvable!
*T5-T6:
- Complexity: how long it takes to solve a problem

- Bad news: many hard problems take so long to solve that they
are almost as bad as non-solvable!

* Today:
- Examplesof “fast” vs. “slow” algorithms

* Thursday:
- Classesf problems depending on how “hard” they are

CS126 18-3 Randy Wang

Algorithm Design Tradeoffs

* Algorithm: step-by-step instruction of how to solve a
problem

* There are usually many different algorithms for solving
single problem

* Goals
- Correctness
- Simplicity (elegance, ease of programming and debuggin
- Time-efficient
- Space-efficient

- Other than correctness, the remaining goals are more oftg
than not conflicting ones and can be traded off against eas
other

* We focus on speed here

CS126 18-4 Randy Wang

| A

0)

2N
ch

How to Solve a Problem “Faster”?

* Walit till next year: bet on Moore’s Law: +60% per year

- Can’t walit till next year
- 1.6 speedup is not enough

* Buy more machines
- 2X machines result in <Xspeedup

- Requires cleverness to use more machines efficiently

* Buy a faster machine
- Supercomputers are a dying breed

- This option is increasingly converging towards the last op

* Find a more clever algorithm

- Potentially much greater gain than any of the above
- Enables gualitative leaps instead of quantitative crawl

tion

CS126 18-5

Randy Wang

Example Problem: Sorting

* Problem: Given an array of integers, rearrange them s
they are in increasing order

* Of great practical importance in databases
* Important “data-intensive” benchmark (more on this la

CS126 18-6 Randy Wang

) that

ter)

Outline

* Introduction
e Insertion sort: algorithm

* Insertion sort: performance
* Quick sort: algorithm

* Quick sort: performance

* Conclusions

CS126 18-7

Randy Wang

“Cat Sort” Demo

CS126

18-8

Randy Wang

Each iteration of the outer loop
sorts everything to the left of one
array element a[i.

Each iteration of the inner loop
compares this element to an
element to its left (j).

By repeatedly swapping adjacent

pairs from right to left, we put
this element in its right spot at
the end of the iteration.

HEE FS S I W

A4 B | _— e’ I W

L.] [
for (3 = 1;

compexch

e

o o
= = = = =
s i . o e =
'?‘-FE“’"'.E a T
R R AR e x.-.':'.+?+"+
e i

R

g B
ey ;
R R e
T i v

e o B v v e e f e e
EEEe 2 A : b £
A 3 3 S i : i

XN
@

<= T; 1++)

> 1; 3--)
[§-11,&a[31);

awiL

he Rest of the Code

void
compexch (int *a, int *b) {
Int t;

if (*b <*a) {
t = *a;
*a =*b
*bh=t
}

* The course packet uses macros (#define), not wrong, but
bad idea--bad style, for many reasons, don'’t follow it.

CS126 18-10 Randy Wang

Outline

* lntroduction
. . - alaori]

* Insertion sort: performance

* Quick sort: algorithm
* Quick sort: performance
* Conclusions

CS126 18-11

Randy Wang

How Many Comparisons?

0 comparison for A
1 comparison for S
2 comparisons for O
3 comparisons for R
4 comparisons for T

N-2 comparisons for -p-A—. e
N-1 comparisons for XeA—2—E

SJUsWald N ‘awl]

* Total comparisons: 0+1+2+3+...+(N-1) = (N-1)*N/2

CS126

18-12 Randy Wang

Essential Description of Running Time:
Big-O Notation

2
E(';'_l) = N2 —g comparisons

* N/2 grows much slower than’i®, so we can toss that

* |[nsertion sort take%‘

* The constant 1/2 is affected by the detalls of a machin
which are not essential either.

*We are left only with K
*\We say the complexity of insertion sortdgN?)

* What is it good for? for example,
- If we increase the size of the problenX]0
- We increase the running time 200

CS126 18-13 Randy Wang

€,

More Examples of Growth Rate ofO(N?)
o insertion sort time is Q(N~2) -
¢ takes about .1 sec for N = 1000
v how |ﬂhg for N = 10000 ? -

about joc_times as long (0 sec)

« how long for N =1 million ?

another factor of 1044 (11 days)

thow long for?
another factor of 1026

CS126 18-14 Randy Wang

Outline

{rtreduction
{rsertien-sort—algoerthim
Insertion-sort-perdormance

e Quick sort: algorithm

* Quick sort: performance
* Conclusions

CS126 18-15

Randy Wang

Demo Recursive Quicksort:
Divide-and-Conquer

l—

Pivot element

i |Piw::-t element i |Piv0t element

v \ v

Recursively Recursively
Finish it Finish 1t

CS126 18-16 Randy Wang

\(UI WINWN\/I L l—I\U‘-IIIrJIV

To sort an array,

it so that

irst divide
its

£

* some eclement alil

ien

L

-
i

! pos

ina

-
L1

S

i

* no larger clement left of i

* no smaller clement right of
Then sort the left and right parts recursively

NGgEXAMP L(E)

N GO X S MP LR

R
B

aA
O
Fi \Nwm....“ﬂ i
PR

T,

W Lok

: G
B 5

.,.._.,.
sl

......
;
i ,ﬁwﬁ

B

e
of...r....".....
i .ﬁﬁ,.m,.,,,,.. i
iy i
S o ...”. 4
o
S

e
S
e

S -: _-;L:_
=

R
S
b

o

i)

IEET

A

A

Partition Demo
ASORTINEZXAMEPL

> E2E? < B2 EP« E£

41 DY
AAORTINEXSMPULE

r——t 4

= K2 < BZ|E?

L
P&

AAERTTINOXSMPILE

top—

{E#E%E%E%E?

AAE@TINOXSMPLR

CS126 18-18 Randy Wang

Par+i

ioning

eclemen-

ioni

ion an array, pick a parti
* scan from right for smaller clemend

To parti

scan from left for larger clement

change
repeat until pointers cross

=

N GEXAMP LE

A S OR T

b

A -.;',l" i
G
e

b
e

e e
B

R
A A
g

e
ey

= ':ﬂ

o

S

=

ait L UIl 11y Hipictiiciitat ull

int partition(Item a[], int 1, int)

y: partitioning element ¢ _ 4. 7

it left-to-right pointer Tt de 3 .tmlv;

j right-to-left pointer v o= alzli = T
3 for (;:;

while (a[++i] < wv)

while (v < a[--3J1)

Stop scanning if pointers CI‘OSS\ »1f (j == 1) break;
if (1 >= j) break;

Swap > exchtal[il,&aljl):;
}

Put the pivot in place »exch&al[i],&alxr]);

Scan from left

Scan from right

return 1i;

{
{(x ‘T+T ‘e)3xosyoInb
!(T-T T ‘e)axosyoTnb
i(x 'T ‘e)uoryTixed =T
}
(T < 1) 3IT
{T JUT
PO

(x quT ‘T juTr ‘[]e 3uUT)3IO0SYOTIND

_ uoirotudwa|dwl f40SHoINd

Outline

{rtreduction
{rsertien-sort—algoerthim
Insertion-sort-perdormance
- Quiek-sort—algoerthm

* Quick sort: performance

e Conclusions

CS126 18-22

Randy Wang

How Many Comparisons?

Each partition is linear scan: O(N

(0p)

()]

£

e
A~~~

%) Pivot element
S .
) —— ;

o 4

% Pivot element Pivot element
=

©

sl v 4 ‘ ¥

m .

@) Recursively Recursively

Finish 1t Finish 1t

* Quick sort ISO(N*LogN)

CS126 18-23 Randy Wang

So What DoeO(N*LogN) Mean in Time?

T

running time for N = 100,000
about .4 seconds
how long for N = 1 million ?

slightly more than 1o times (about 5 sec:
Whereas insertion sort would take 108, or 40 sec

CS126 18-24 Randy Wang

Outline

{rtreduction
{rsertien-sort—algoerthim

. ! : ce
- Quiek-sort—algoerthm

- Quick sortperformance

e Conclusions

CS126 18-25

Randy Wang

JUe]lsSUuUT JUe3ISUT JUBISUT IToanduaoozadns
B T
iI9aNUTU 9 Do9s gzZ* JUBR3SUT od Ssuwoy
RN e o e T,
JTOSHOTOD
e e s e o e
I{eem 9T D9s T JUEe]3SUT ITeinduooxasdns
i xesX& OTE SINOY 7 JUB}ISUT ODd SuIor]

B e e wA A e e e
QAIO0OS UOTAISSUT

UOTTTTFA UOTTTTW puesnoyly

s?24OWIESD Dwiiy: Buituuny

PUosas/suosidodwon TiLel s20p adindwonaasdns
PUoODDsS/sUOSIdOdmoD g.01 SDLENDDIXD D4 2WOoOY
+OY} PUNSSO X3

sa2indwoda2dns uoys xNji2Mmod D240Wx) D4AO

swytiiobjo pooy

ﬁ | haowwns sishjouo buijacg u

Can We Do Better Than O(N*Log(N))?

* LOWER BOUND for sorting

THM: All algorithms use) N log N comparisons
Proof sketeh:
N! different situations

lg(N!) comparisons to separate them

differ by no more
|9(N” N |9 N than a constant factor

1111111111111111111

What's the Real World Like?

* Highly contested “land speed record9aytona vs. Indy
- Daytona: commercially available systems
- Indy: experimental systems

* 1999 sort records
- Daytona Minute Sort: 7.6 GB, SGI 32-CPU Origin
- Indy Minute Sort: 10.3 GB, 60 NT PCs, UIUC/UCSD

* Observations from previous records held at Berkeley:
- The real world is a lot uglier!
- Details hidden in the constant@{c*N*LogN)
- Hard to make a giant cluster appear as a seamless whole

- Difficult challenge for system software to optimize utilization
of networks and disks

CS126 18-28 Randy Wang

Obsession with Speed

* The obsession with speed is as old as computers, adv

on all fronts

* The sort land speed records are a good illustration

* Theory
- Better algorithms

- New computation models: quantum computing?

* Architecture
- Faster processors
- Faster everything else: networks, disks, ...

* Systems software

- Deliver the potential of the pile of silicon to applications

CS126 18-29

Randy Wang

ances

What We Have Learned Today

e Sort

- How does insertion sort work? What's its complexity? Why is
It SO?

- Same questions for quick sort.
e Complexity

- Given simple/similar code, you should be able to analyzel|its
complexity. Is itO(LogN) O(N), O(N*LogN), O(N?), O(N?),
L7

- Performance prediction by scaling problem size

CS126 18-30 Randy Wang

