
CS 126 Lecture T5:
Algorithm Design/Analysis

CS126 18-1 Randy Wang

Second Midterm Stats

CS126 18-2 Randy Wang

Outline

• Introduction

• Insertion sort: algorithm

• Insertion sort: performance

• Quick sort: algorithm

• Quick sort: performance

• Conclusions

CS126 18-3 Randy Wang

Where We Are

• T1 - T4:
- Computability : whether a problem is solvable at all
- Bad news: “most” problems are not solvable!

• T5 - T6:
- Complexity: how long it takes to solve a problem
- Bad news: many hard problems take so long to solve that they
are almost as bad as non-solvable!

• Today:
- Examples of “fast” vs. “slow” algorithms

• Thursday:
- Classes of problems depending on how “hard” they are

CS126 18-4 Randy Wang

Algorithm Design Tradeoffs

• Algorithm: step-by-step instruction of how to solve a
problem

• There are usually many different algorithms for solving a
single problem

• Goals
- Correctness
- Simplicity (elegance, ease of programming and debugging)
- Time-efficient
- Space-efficient
- Other than correctness, the remaining goals are more often
than not conflicting ones and can be traded off against each
other

• We focus on speed here

CS126 18-5 Randy Wang

How to Solve a Problem “Faster”?

• Wait till next year: bet on Moore’s Law: +60% per year?
- Can’t wait till next year
- 1.6 speedup is not enough

• Buy more machines
- 2X machines result in < 2X speedup
- Requires cleverness to use more machines efficiently

• Buy a faster machine
- Supercomputers are a dying breed
- This option is increasingly converging towards the last option

• Find a more clever algorithm
- Potentially much greater gain than any of the above
- Enables qualitative leaps instead of quantitative crawl

CS126 18-6 Randy Wang

Example Problem: Sorting

• Problem: Given an array of integers, rearrange them so that
they are in increasing order

• Of great practical importance in databases

• Important “data-intensive” benchmark (more on this later)

CS126 18-7 Randy Wang

Outline

• Introduction

• Insertion sort: algorithm

• Insertion sort: performance

• Quick sort: algorithm

• Quick sort: performance

• Conclusions

CS126 18-8 Randy Wang

“Cat Sort” Demo

Insert on Sort
Each iteration of the outer loop
sorts everything to the left of one
array element a[i].

T
im

e

Each iteration of the inner loop
compares this element to an
 element to its left (j).
By repeatedly swapping adjacent
pairs from right to left, we put
this element in its right spot at
the end of the iteration.

& &

CS126 18-10 Randy Wang

The Rest of the Code

• The course packet uses macros (#define), not wrong, but
bad idea--bad style, for many reasons, don’t follow it.

void
compexch (int *a, int *b) {

int t;
if (*b < *a) {

t = *a;
*a = *b;
*b = t;

}
}

CS126 18-11 Randy Wang

Outline

• Introduction

• Insertion sort: algorithm

• Insertion sort: performance

• Quick sort: algorithm

• Quick sort: performance

• Conclusions

CS126 18-12 Randy Wang

How Many Comparisons?

• Total comparisons: 0+1+2+3+...+(N-1) = (N-1)*N/2

0 comparison for A
1 comparison for S
2 comparisons for O
3 comparisons for R
4 comparisons for T

N-2 comparisons for T
N-1 comparisons for X

T
im

e, N
 elem

ents

CS126 18-13 Randy Wang

Essential Description of Running Time:
Big-O Notation

• Insertion sort takes comparisons

• N/2 grows much slower than N2/2, so we can toss that

• The constant 1/2 is affected by the details of a machine,
which are not essential either.

• We are left only with N2

• We say the complexity of insertion sort is O(N2)

• What is it good for? for example,
- If we increase the size of the problem 10X,
- We increase the running time 100X

N N 1–()⋅
2

-------------------------- N
2

2
------- N

2
----–=

CS126 18-14 Randy Wang

More Examples of Growth Rate of O(N2)

CS126 18-15 Randy Wang

Outline

• Introduction

• Insertion sort: algorithm

• Insertion sort: performance

• Quick sort: algorithm

• Quick sort: performance

• Conclusions

CS126 18-16 Randy Wang

Demo Recursive Quicksort:
Divide-and-Conquer

Qu cksort Example

CS126 18-18 Randy Wang

Partition Demo

Part t on ng Implementat on

& &

& &

Scan from left

Scan from right

Stop scanning if pointers cross

Put the pivot in place

Swap

CS126 18-22 Randy Wang

Outline

• Introduction

• Insertion sort: algorithm

• Insertion sort: performance

• Quick sort: algorithm

• Quick sort: performance

• Conclusions

CS126 18-23 Randy Wang

How Many Comparisons?

• Quick sort is O(N*LogN)

C
an

 d
iv

id
e

O
(lo

gN
) t

im
es

Each partition is linear scan: O(N)

CS126 18-24 Randy Wang

So What Does O(N*LogN) Mean in Time?

Whereas insertion sort would take 100X, or 40 sec

CS126 18-25 Randy Wang

Outline

• Introduction

• Insertion sort: algorithm

• Insertion sort: performance

• Quick sort: algorithm

• Quick sort: performance

• Conclusions

CS126 18-27 Randy Wang

Can We Do Better Than O(N*Log(N))?

differ by no more
 than a constant factor

CS126 18-28 Randy Wang

What’s the Real World Like?

• Highly contested “land speed records”: Daytona vs. Indy
- Daytona: commercially available systems
- Indy: experimental systems

• 1999 sort records
- Daytona Minute Sort: 7.6 GB, SGI 32-CPU Origin
- Indy Minute Sort: 10.3 GB, 60 NT PCs, UIUC/UCSD

• Observations from previous records held at Berkeley:
- The real world is a lot uglier!
- Details hidden in the constant in O(c*N*LogN)
- Hard to make a giant cluster appear as a seamless whole
- Difficult challenge for system software to optimize utilization
of networks and disks

CS126 18-29 Randy Wang

Obsession with Speed

• The obsession with speed is as old as computers, advances
on all fronts

• The sort land speed records are a good illustration

• Theory
- Better algorithms
- New computation models: quantum computing?

• Architecture
- Faster processors
- Faster everything else: networks, disks, ...

• Systems software
- Deliver the potential of the pile of silicon to applications

CS126 18-30 Randy Wang

What We Have Learned Today

• Sort
- How does insertion sort work? What’s its complexity? Why is
it so?

- Same questions for quick sort.

• Complexity
- Given simple/similar code, you should be able to analyze its
complexity. Is it O(LogN), O(N), O(N*LogN), O(N2), O(N3),
...?

- Performance prediction by scaling problem size

