
CS 126 Lecture A5:
Computer Architecture

CS126 13-1 Randy Wang

Outline

• Introduction

• Some basics

• Single-cycle TOY design

• Multicycle TOY design

• Conclusions

CS126 13-2 Randy Wang

What We Have

CS126 13-3 Randy Wang

What We Want to Do

• Remember the TOY simulator written in C?

• Now it’s time to use the components we have to implement
this loop in hardware!

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;

until halt signal

CS126 13-4 Randy Wang

Outline

• Introduction

• Some basics

• Single-cycle TOY design

• Multicycle TOY design

• Conclusions

CS126 13-5 Randy Wang

Single Cycle vs. Multicycle Design

• Single cycle design: each iteration is completed within one
clock cycle, long cycles, simple

• Multi-cycle design: each iteration is broken down into
multiple clock cycles: short cycles, more complex

• More tradeoffs later

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;

until halt signal

cycle tim e rising edge fallin g edge

CS126 13-6 Randy Wang

Datapath and Control: Definition by Example

• Blue: datapath, Red: control signals
• Control circuit decides how to set Select and whether to

enable WriteEnable3
• When clock ticks
- One of Reg1 or Reg2 gets copied to Reg3 if WriteEnable3 is on
- Nothing gets copied to Reg3 if WriteEnable3 is off

M
U

X

R
eg1

WriteEnable1 Cl

R
eg2

WriteEnable2 Cl

R
eg3

WriteEnable3 Cl

Select

W
ri

te
E

na
b

le
1

W
ri

te
E

na
b

le
2

W
ri

te
E

na
b

le
3

S
el

ec
t

Control Circuit

CS126 13-7 Randy Wang

The Big Picture

• The five classic components of a computer

CS126 13-8 Randy Wang

Steps Towards Designing a Processor

• Analyze instruction set architecture (ISA) and understand
datapath requirements

• Select set of datapath components and establish clocking
methodology

• Assemble datapath to meet ISA requirements

• Analyze how to implement each instruction to determine
the setting of various control signals

• Assemble the control logic

CS126 13-9 Randy Wang

Review: Register File (From Last Lecture)

• Register file of k-bit words

• One address port, so can’t read and write in the same clock
cycle

reg 0
reg 1
reg 2

reg n-1

input

write

Clock

output

address log2n

k

k

CS126 13-10 Randy Wang

What We Have (cont.): TOY Register File

• 8 general purpose registers
• 2 16-bit output busses, 1 16-bit input bus
• r1, r2 (3-bit numbers) specifies which registers go on bus1, 2
• r0 (3-bit) specifies which registers to receive input data when write

enabled at clock pulse; when not write-enabled, the named register’s
value appears on bus 0

reg 0
reg 1
reg 2

reg 7

bus0

write
Clock

bus1

r0

3

r1

3

r2

3

16 16

bus2

16

CS126 13-11 Randy Wang

What We Have (cont.): TOY ALU

• We have learned about an adder. Generalize it to an ALU.
• Two 16-bit inputs, one 16-bit output
• A 3-bit control specifies which arithmetic or logic

operation to perform (+ - * ^ & >> <<)

16

A
LU

16 3

16

ALUctrl

CS126 13-12 Randy Wang

Outline

• Introduction

• Some basics

• Single-cycle TOY design
- Datapath design
- Control design

• Multicycle TOY design

• Conclusions

CS126 13-13 Randy Wang

TOY Datapath Components

• Refine the simulator code to be more specific
• Each of these four lines will be handled by a piece of

hardware
- Instruction fetch
- Arithmetic (execution)
- Memory
- Write back

• We will assemble them one at a time, and assemble all four
together at the end

• Caveat: I’m leaving out a few instructions as exercises

repeat
fetch instruction;
perform arithmetic operation;
access memory if necessary;
write back to register if necessary;

until halt signal

CS126 13-14 Randy Wang

TOY Arithmetic (Execution) Data Path

• Blue: datapath, Red: control signals
• (Part of) Implementation of TOY instruction:

r0 = r1 + r2
• r0, r1, r2 control signals come straight from instruction, more on

control later
• Clock controls when write back occurs
• Reads behave as combinational logic: result valid after delay

Cl

r0

3

r1

3

r2

3

16

RegWr

8x16-bit
Registers

16

A
LU

16
3

16

ALUctrl

bus0
bus1

bus2

CS126 13-15 Randy Wang

TOY Instruction Fetch Unit

• Key question: which instruction to fetch
- If jump, then fetch the jump target (which is in instruction itself)
- Otherwise, fetch the next instruction

opcode (15:12) r0 (11:8) r1 (7:4) r2 (3:0)

Instruction Register (IR)Instruction
M emor y

Adder

M UX

PC

Imm8

nPCsel

Imm8

1

Addr

Data

Cl

8

8

8

16

from ALU

2

CS126 13-16 Randy Wang

Timing Demo: Putting Instruction Fetch
and Add Together

CS126 13-17 Randy Wang

TOY Memory Datapath

• For instructions that load from or write to memory

• Key question: where does address come from?
- From instruction itself (example: r0 = mem[3D])

- From ALU (example: r0 = mem[r1+r2])

16

from

M U X

Data
M em ory16

8

Im m 88

C l

M e m W r

A dd rS el

16

D ata In

D
ataO

u
t

A dd ress

register
file bus 0

from
A LU
outpu t

Memory address can
come from one of two
places: Imm8 in the
instruction, or result
of ALU (for indexed
addressing)

for store instruction
(opcode A) for load instruction

(opcode 9)

w rite resu lt back
to register file

CS126 13-18 Randy Wang

TOY Write Back Datapath

• Key question: what to write back to register file? One of
three possibilities, examples:
- r0 = r1 + r2

- r0 = mem[3D]

- r0 = 3A

16

M U X

Im m 8
8

W B sel

16

S ignExt

16from
A L U
output

to
register
file bus 0

What can be written
back to register file?
1) result of ALU;
2) result of loading
memory; or
3) Imm8 from

instruction

Sign extension to
get negative number
right

from
load ing
m em ory

2

CS126 13-19 Randy Wang

Putting It All Together (Complete Single Cycle TOY Datapath)

• Example TOY instruction 1A:9A45 (r2 = mem[r4+r5])
• Caveat: I’m leaving out a couple instructions as exercises

opcode (15:12) r0 (11:8) r1 (7:4) r2 (3:0)

Instruction Register (IR)

Instruction
M emory

Adder

M UX

PC

Imm8

nPCsel

Imm8

1

Addr

Instr

Cl

C l

r0

3

r1

3

r2

3

16

RegWr

8x16-bit
Registers

16

A
L

U

16
3

16

AL Uctrl

bus0
bus1

bus2

2Cond

8

8

8

16

M U X

Data
M emory16

M U X

8

Imm 8
8

16

Cl

M em W r

AddrSel

W B sel

16

SignExt

16

DataIn

D
ata

O
u

t

Address

2

Comp

2

CS126 13-20 Randy Wang

Abstract View of Relationship Between
Single Cycle TOY Datapath and Control

• The flow of data in the datapath commanded by control signals

• Control signals issued by the control unit

• Control unit gets its input from the current instruction and condition
codes from the datapath

• Control unit is nothing but a big combinational circuit

opcode (15:12) r0 (11:8) r1 (7:4) r2 (3:0)

Control

nPCsel RegWr ALUctrl MemWr AddrSel WBsel Cond

Datapath

Instruction

3 2 22

CS126 13-21 Randy Wang

Implementing Single Cycle TOY Control

• Meaning of a decoder output that is 1: one particular instruction is
executing and certain conditions are met

• Meaning of each OR-gate: turn on this control signal if any one of
“these things” happen

decoder

opcode(4bits) high bit of r0
(for indexed addressing)

7 bits of

27=128 bits

input

of output
RegWr

WBsel0

Cond

CS126 13-22 Randy Wang

Outline

• Introduction

• Some basics

• Single-cycle TOY datapath design

• Single-cycle TOY control design

• Multicycle TOY design

• Conclusions

CS126 13-23 Randy Wang

Problems with Single-Cycle
Implementation

• Long cycle time
- Not all instructions are equal, some longer, some shorter
- Memory accesses can be a lot longer
- The slowest instruction determines cycle time
- The processor sits idle for faster instructions

• Waste of chip area, for example:
- Need an adder to compute PC+=4 in addition to the ALU
- Could in theory eliminate the adder and borrow ALU when it’s
not needed

- But in a single cycle, we can’t tell when ALU is done

CS126 13-24 Randy Wang

Multicycle Design

• Multicycle design
- Look at our TOY simulator again
- Carefully break down each instruction into these roughly equal

stages
- Use one (short) clock cycle to execute each stage

• Advantages
- Shorter instructions can just skip unnecessary cycles, more efficient

in time
- Can borrow ALU to increment PC earlier: more efficient in chip area

repeat
fetch instruction;
decode instruction;
execute instruction;
access memory if necessary;
write back to register if necessary;

until halt signal

CS126 13-25 Randy Wang

Multicycle TOY Datapath

• Divide datapath up into 5 pieces (red boxes, analogous to the simulator
code on previous slide: fetch, decode, execute, memory, write-back)

• Introduce temporary registers (blue boxes) to hold intermediate
answers

• During each clock cycle, previous intermediate values are “clocked”
into next stage, where the next intermeddiate value is calculated

P
C

A
d

d
e

r

IR

In
s

tru
c

tio
n

M
e

m
o

ry

1

N
P

C

R
e

g
is

te
rs

F
ile R 1

R 2

R 0

E x t

Im
m

A
L

U

M
U

X

C
ond

R
e

s
u

lt

D
a

ta
M

e
m

o
ry

M
U

X

M
D

a
ta

M
U

X

fetch decode execute m em ory W B

to control

CS126 13-26 Randy Wang

“Clocking” Values from One Stage to Next

• (We have seen this slide before)

• The trick is to figure out how and when to set the control
signals!

M
U

X

R
eg1

WriteEnable1 Cl

R
eg2

WriteEnable2 Cl

R
eg3

WriteEnable3 Cl

Select

W
rit

e
E

na
b

le
1

W
rit

e
E

na
b

le
2

W
rit

e
E

na
b

le
3

S
el

ec
t

Control Circuit

stage n stage n+1

CS126 13-27 Randy Wang

How to Modify Control

• Control depends on both instruction and time

• Use a counter to keep track of time (which stage the
instruction is in)

• Will use counter to help determine control

CS126 13-28 Randy Wang

What’s New In This Picture?

• Counter output becomes part of control input

Instruction Counter

Control

Datapath

Cl

CS126 13-29 Randy Wang

Outline

• Introduction

• Some basics

• Single-cycle TOY datapath design

• Single-cycle TOY control design

• Multicycle TOY design

• Conclusions

CS126 13-30 Randy Wang

Steps Towards Designing a Processor

• Analyze instruction set architecture (ISA) and understand
datapath requirements

• Select set of datapath components and establish clocking
methodology

• Assemble datapath to meet ISA requirements

• Analyze how to implement each instruction to determine
the setting of various control signals

• Assemble the control logic

CS126 13-31 Randy Wang

Where’s the Science?
Understanding Tradeoffs

• We saw a deceptively trivial tradeoff today: clocking
methodology
- Single cycle architecture vs. multicycle architecture
- Multicycle sounds obviously superior, right?
- Extra temporary registers and extra control logic of latter
 + Introduce time overhead
 + Introduce chip area overhead
 + Introduce extra complexity, cost, time-to-market,
- The question to a computer architect is whether this tradeoff is
worth it

• More complex tradeoffs at each step of the prev. slide

• Nice to hide all this under the hood of an ISA

CS126 13-32 Randy Wang

What We Have Learned Today

• Concepts:
- Datapath vs. control
- Single-cycle vs. multicycle designs

• More components: TOY register file and ALU

• Single-cycle design
- How signals propagate in different parts of the datapath in
general

- How to implement control signals in general. Where do inputs
come from?

• Multicycle design
- Main general modifications made to datapath and control

• I Don’t expect people to memorize all the details

CS126 13-33 Randy Wang

Computer Architecture

• Coordination of many levels of abstraction

• Under a rapidly changing set of forces

• Design, measurement, and evaluation

CS126 13-34 Randy Wang

Forces Influencing Computer Architecture

CS126 13-35 Randy Wang

Dramatic Technology Change

• Technology
- Processor logic capacity: +30% / yr; clock rate: +20% / yr;
overall performance: ~+60% / yr!

- Memory and disk capacity: ~+60% / yr

• Numbers, though impressive, are boring. What’s really
exciting is revolutionary leaps in applications!

• Quantitative improvement and revolutionary leaps
interleave as technology advances
- ~1985: Single-chip (32-bit) processors and single-board
computers emerged, led to revolutions in all aspects of
computer science!

- Conjecture: ~2002: Emergence of powerful single-chip
systems, what will be its implication?!

