CS 126 Lecture A4: Sequential Circuits

Outline
• Introduction
• An S-R Flip-flop
• <u>More flip-flops</u>
• Registers and memory
• Counters
• Conclusions

CS126

Randy Wang

Correting Lecture Notes in Your Course Reader

- Memory vs. register files
 - Lecture notes use the term "memory"
 - Meant to say register files (or SRAM)
 - DRAM made differently--no flip-flops
 - DRAM: one transistor per bit!
 - Much higher density than flip-flops, but slower

Randy Wang

What We Have Learned Today

- Flip-flops ([S-R, D], [unclocked, clocked, master-slave, edge triggered])
 - Their behavior (timing diagrams, truth tables, characteristic equations)
 - How they are made
- Some sequential devices (registers, register files, counters)
 - Their behavior
 - How they are made