CS 126 Lecture A3:
Boolean Logic

Outline

¢ |ntroduction

* Logic gates

* Boolean algebra

* Implementing gates with switching devices
* Common combinational devices

* Conclusions

CSs126 11-1 Randy Wang

Where We Are At

*We have learned the abstragierface presented by a
machine: the instruction set architecture

* What we will learn: theémplementation behind the
interface:

- Start with switching devices (such as transistors)

- Build logic gates with transistors

- Build combinational circuit (memory-less) devices using ¢
- Next lecture: build sequential circuit (memory) devices

- The one after: glue these devices into a computer

CSs126 11-2 Randy Wang

Digital Systems

* ... however, the application of digital logic extends way
beyond just computers.

* Today, digital systems are replacing all kinds of analog
systems in life (data processing, control systems,
communications, measurement, ...)

*What is a digital system?
- Digital: quantities or signals only assume discrete values
- Analog: quantities or signals can vary continuously

* Why digital systems?
- Greater accuracy and reliability

CS126 11-3 Randy Wang

ates

Digital Logic Circuits

§1 ~ ~Z1
% 2 > > 22 9
g o Circuit s 8
IS o ° =
(] ® n

Xm— > - Z

* The heart of a digital system is usually a digital logic
circuit

CSs126 11-4 Randy Wang

Outline

* Introduction

* | ogic gates

* Boolean algebra

* Implementing gates with switching devices
* Common combinational devices

* Conclusions

CS126 11-5 Randy Wang

An AND-Gate

D,
D

0

1

* A smallest useful circuit is a logic gate

* We will connect these small gates into larger circuits

CS126

Randy Wang

An OR-Gate and a NOT-Gate

CS126

Randy Wang

Building Circuits Using Gates

rewind button(remote)
rewind button (VCR)

start of tape reached—l>07

rewind tape

* Can implemen&ny circuit usingonly AND, OR, and NOT
gates

* But things get complicated when we have lots of inputs
outputs...

CSs126 11-8 Randy Wang

Problems

,,,,,,,,,,,,,,,,,,,,,

e e |

,,,,,,,,,,,,,,,,,,,,,

* Many different ways of implementing a circuit (the two
above circuits turn out to be the same!)

* How do we find the best implementation? Need better
formalism

* Also need more compact representation

* This leads to the study of boolean algebra

CS126 11-9 Randy Wang

and

Outline

* Introduction

* Logic-gates

* Boolean algebra

* Implementing gates with switching devices
* Common combinational devices

* Conclusions

CSs126 11-10 Randy Wang

Boolean Algebra

* History

- Developed in 1847 by Boole to solve mathematic logic
problems

- Shannon first applied it to digital logic circuits in 1939

* Basics
- Boolean variables variables whose values can be 0 or 1

- Boolean functions functions whose inputs and outputs are
boolean variables

* Relationship with logic circuits
- Boolean variables correspond to signals
- Boolean functions correspond to circuits

CSs126 11-11 Randy Wang

Defining a Boolean Function with
a Truth Table

X 0 0 1 1
y o) 1 0 1
AND(X,y) 0 0 0 1

* A systematic way of specifying a function value #dir
possible combination of input values

* A function that takes 2 inputs has2columns
* A function that takes n inputs ha% &lumns
* This particular example is the AND-function

CSs126 11-12 Randy Wang

OR and NOT Truth Tables

X 0) 0 1 1
y 0 1 0 1
OR(X,y) 0 1 1 1
X 0 1
NOT(X) 1 0

CSs126 11-13 Randy Wang

Defining a General Boolean Function Using
Three Basic Boolean Functions

1D > b

AND(X,y)=Xy=x*y OR(x,y)=x+y NOT(x)=x’

* The three basic functions have short-hand notations

* Can compose the three basic boolean functions to forr
arbitrary boolean functions [such g&,y)=xy+z’]

CS126 11-14 Randy Wang

Two Ways of Defining a Boolean Function
X 0 0 1 1

y 0 1 0 1
XOR(X,y)=x"y 0 1 1 0

XOR(X,y) = Xy = X'y + xy’

*We have learned that any function can be defined in tr
two ways: truth table and composition of basic functior
* Why do we need all these different representations?
- Some are easier than others to begin with to design a circuit
- Usually start with truth table (or variants of it)
- Derive a boolean expression from it (perhaps including
simplification)
- Straightforward transformation from boolean expression to circt

CSs126 11-15 Randy Wang

©=

mn

1ese
S

t

U

More Examples of Boolean Functions

Sizteen different functions|(Gluing the truth tables of
LI A = all functions of two variables
0101 ¥ into one table
a0 an congcant 0O
= I O I) AND {x¥] [daccda 11 = 3]

o0 1o [decade 10 = 1]
o011 =
019 @ [Aaccsla 01 = 1]
o1l1lox ¥
£ 110 | Xom (xyl
01ldl R FEAY)
1000 HOR {("not or™) [deccds {0 = O]
i001 == [YRskE ReE) "
S S For n variables, there
e are a total of
1100 HOT = (%7} 2n
11021
1110 HAMD ("mot and®) |functions!
1111 constant 1
CSs126 11-16 Randy Wang

So How to Translate a Truth Table to a
Boolean Expression (Sum-of-Products)?
e form AND terms for ecach 1 in the function
use v if it corfesponds to v 31
use v' (NOT vl ifiT corresponds to v = ¢
¢ OR the #€rms Aogether

Ex:/majorify fysction

x: 0 0 fo(0)1 1
: 0 0 WD)ofol1]1
g T

z: 01 NLYOLLA

m = x'yz + xy'z + xyz' + xyz

CSs126 11-17 Randy Wang

Another Example

Example: odd parity function

x: 0 0 11

yv: O 1 01

z = 1 1 0
F

1101001
p = x'y'z + x'yz' + xy'z' + xyz
oo ! orp Y e

CS126 11-18 Randy Wang

Parity Function Construction Demo

CS126 11-19 Randy Wang

Transform a Boolean Expression into a
Boolean Circuit

Use sum-of-products form of function
Example: majority
m = x'yz + xy'z + xyz' + xyz

CSs126 11-20 Randy Wang

Simplification Using Boolean Algebra

F—— = = = = — — = — — — — — — — — — 9

777777777777777777777

e e |

777777777777777777777

* Large body of boolean algebra laws can be employed
simplify circuits

* The previous example:
Xy + xy’' = x(yty’) = x*1 =X

* Much more, but you don’t have to know any of this...

CSs126 11-21 Randy Wang

Mini-Summary:
How Do We Make a Combinational Circuit

* Represent input signals with input boolean variables,
represent output signals with output boolean variables

e Construct truth table based on what we want the circu
do

* Derive (simplified) boolean expression from the truth t:

* Transform boolean expression into a circuit by replacir
basic boolean functions with primitive gates

CSs126 11-22 Randy Wang

Outline

* Introduction

* Logic-gates

- Bosolean-algebra

* Implementing gates with switching devices
* Common combinational devices

* Conclusions

CSs126 11-23 Randy Wang

tto

able
g

Switching Devices

Main input (M)

o

= V cC o o1 1
3

g M | 0] 1] 0 1
© O ©o0 1 0 o0
o

1< O=MC

(@]

© Output (O)

* Any two-state device can be a switching device, exam

are relays, diodes, transistors, and magnetic cores
* A transistor example

* Any boolean function can be implemented by wiring
together transistors

ples

CSs126 11-24 Randy Wang

Make a NOT-gate Using a Transistor

CSs126 11-25 Randy Wang

Make an OR-gate Using Transistors
1

(Xy’)=x+y

(DeMorgan’s Law)

CSs126 11-26 Randy Wang

Make an AND-gate Using Transistors

CS126 11-27 Randy Wang

Outline

~Introduction

* Legie-gates

- Bosolean-algebra

. I . i ek levices
* Common combinational devices

* Conclusions

CSs126 11-28 Randy Wang

Decoder Interface

example:
igixgiz =1,0,1 —-dy=Xy'Z’
di5:O elsewhere »d;=Xy'z

—do=XyZ’
—d3=X'yz
decoder |——d,=xy'z’
—0d5=Xy’z
—»dg=xyZ’
—d,=xyz

X—> 3.8
y—>
 ——p

DECODER o
N Vinputs” 2 Soolesn Lancions

2~N “outputs’

P Turns on precisely one ‘output’
address is encoded in “inputs’
R R ST e

CSs126 11-29 Randy Wang

Deriving Decoder Boolean Expressions

X 0 0 0 0 1 1 1 1
y 0o |0 |1 i1 /0 |0 |1 |1
z 0 1 0 1 0 1 0 1
dg 1 0 0 0 0 0 0 0
dO:X1y)ZI
X 0 0 0 0 1 1 1 1
y 0o |0 |1 i1 0 |0 |1 |1
z 0 1 0 1 0 1 0 1
d, 0 1 0 0 0 0 0 0
di=xy'z

* Can bypass truth table when you’re comfortable with t

his

CS126 11-30 Randy Wang

Decoder Implementation

e ¥ r‘="|
Bk
1 } BrywrEr QOO

s

E'y'z 001

I x'yz' 010

F-L__}__‘D_ xfyz 011

By e e
l L_1}m

—_———— 7 =x=yz' 110

— L_l_%;—l:::D-HEE 111

CS126 11-31 Randy Wang

Decoder Demo

38t Decoder |[@em 12

e e [R (& e o

CS126 11-32 Randy Wang

Multiplexer Interface

| o—P
| ——>
| 2 ———>|
| 3—| 8-1 I
| ;—| MUX
| g——>
| 6—P
| —
]

*1o-l; are the “data inputs”, x,y,z form the “control” inputs
and are interpreted together as one binary number

* One data input is selected by the control and becomes
output

* For example, if X,y,z are 1,0,1, then M=I

CS126 11-33 Randy Wang

Multiplexer Boolean Expression

X 0 0 0 0 1 L

y 0 0 0 0 1 L

z 0 0 1 1 1 L

l, | O 0 0 0 0 1

I 1 0 1 0

l o 0 0

M 1 1 0 1
M=xy'z" |4+ XYz I, +...+Xyz |4

* A lot easier in this case to directly derive the boolean
expression instead of starting with a truth table

CSs126 11-34 Randy Wang

Multiplexer Implementation

X A |0 |1 |7

} } _‘li 0..

[[
[r 3
[-
4 r =
[—
*M=xy'z'l o+ XYzl 1 +XyzZ'l 2+ Xyzl 3

+xy'z'l 4 +xyzl 5+XxyzZl g +Xyzl -

CSs126 11-35 Randy Wang

An Adder Bit-Slice Interface

Ly

XY Z

* Add three 1-bit numbers x, y, z
*sis the 1-bit sum
*c is the 1-bit carry

Cs126 11-36 Randy Wang

An Adder Bit-Slice Implementation

Sum: odd parity circuit
Carry: majority circuit '

*See slides 11-16, 11-17, and 11-18 for details of the ot
parity circuit and majority circuit

Cs126 11-37 Randy Wang

An N-bit Adder Made with Bit-Slices

@m fwo N-bit numbers x and D
No¥ a bit-by-bit function of the inputs

because of ', W
01@{‘56‘1?51@1 \.
+)000100001
01100000]|0

ADD’H;: one copy for each bit, strung together
WY

‘\3& "\)n 1090
\
~J, O\ ¢ HLOA\ b e
l S J S 5-\ : S'-)
-\S,.\ Sa S, So
Outline
* Introduction
* Logic-gates
* Boolean-algebra
. | . i itehi levices
* Common-combinational-devices

* Conclusions

Cs126 11-39 Randy Wang

Abstractions and Encapusulation

All the lessons that we learned for ADT transistors
apply here to hardware as well! f'
'S D D >
w_oWw
f- majority parity
MmO
1-bit
f- 1 addef
v
NN 77 77
n-bit adder
yIvvYTYY

CSs126 11-40 Randy Wang

Building a Computer Bottom Up

* Circuit design: specifying the interconnection of
components such as resistors, diodes, and transistors
form logic building blocks

* L oqgic design determining how to interconnect logic

building blocks such as logic gates and flip-flops to for
subsystems

* System desigr(or computer architecture): specifying th

m

number, type, and interconnection of subsystems such as

memory units, ALUs, and 1/O devices

CSs126 11-41 Randy Wang

What We Have Learned

* How to build basic gates using transistors

* How to build a combinational circuit
- Truth table
- Sum-of-product boolean expression
- Transform a boolean expression into a circuit of basic gates
* The functionality of some common devices and how they
are made
- Decoder
- Multiplexer
- Bit-slice adder

* You're not responsible for
- Boolean algebra laws, or circuit simplification

CS126 11-42 Randy Wang

