
CS 126 Lecture A3:
Boolean Logic

CS126 11-1 Randy Wang

Outline

• Introduction

• Logic gates

• Boolean algebra

• Implementing gates with switching devices

• Common combinational devices

• Conclusions

CS126 11-2 Randy Wang

Where We Are At

• We have learned the abstract interface presented by a
machine: the instruction set architecture

• What we will learn: the implementation behind the
interface:
- Start with switching devices (such as transistors)
- Build logic gates with transistors
- Build combinational circuit (memory-less) devices using gates
- Next lecture: build sequential circuit (memory) devices
- The one after: glue these devices into a computer

CS126 11-3 Randy Wang

Digital Systems

• ... however, the application of digital logic extends way
beyond just computers.

• Today, digital systems are replacing all kinds of analog
systems in life (data processing, control systems,
communications, measurement, ...)

• What is a digital system?
- Digital: quantities or signals only assume discrete values
- Analog: quantities or signals can vary continuously

• Why digital systems?
- Greater accuracy and reliability

CS126 11-4 Randy Wang

Digital Logic Circuits

• The heart of a digital system is usually a digital logic
circuit

Circuit

x1x2

xm

In
pu

ts

z1z2

zn

O
utputs

CS126 11-5 Randy Wang

Outline

• Introduction

• Logic gates

• Boolean algebra

• Implementing gates with switching devices

• Common combinational devices

• Conclusions

CS126 11-6 Randy Wang

An AND-Gate

• A smallest useful circuit is a logic gate

• We will connect these small gates into larger circuits

0
0 0

0
1 0

1
0 0

1
1 1

CS126 11-7 Randy Wang

An OR-Gate and a NOT-Gate

0
0 0

0
1 1

1
0 1

1
1 1

0 1

1 0

CS126 11-8 Randy Wang

Building Circuits Using Gates

• Can implement any circuit using only AND, OR, and NOT
gates

• But things get complicated when we have lots of inputs and
outputs...

rewind button(remote)

rewind button (VCR)

start of tape reached

rewind tape

CS126 11-9 Randy Wang

Problems

• Many different ways of implementing a circuit (the two
above circuits turn out to be the same!)

• How do we find the best implementation? Need better
formalism

• Also need more compact representation
• This leads to the study of boolean algebra

x
y

?

x
y

x

CS126 11-10 Randy Wang

Outline

• Introduction

• Logic gates

• Boolean algebra

• Implementing gates with switching devices

• Common combinational devices

• Conclusions

CS126 11-11 Randy Wang

Boolean Algebra

• History
- Developed in 1847 by Boole to solve mathematic logic
problems

- Shannon first applied it to digital logic circuits in 1939

• Basics
- Boolean variables: variables whose values can be 0 or 1
- Boolean functions: functions whose inputs and outputs are
boolean variables

• Relationship with logic circuits
- Boolean variables correspond to signals
- Boolean functions correspond to circuits

CS126 11-12 Randy Wang

Defining a Boolean Function with
a Truth Table

• A systematic way of specifying a function value for all
possible combination of input values

• A function that takes 2 inputs has 2x2 columns

• A function that takes n inputs has 2n columns

• This particular example is the AND-function

x 0 0 1 1

y 0 1 0 1

AND(x,y) 0 0 0 1

CS126 11-13 Randy Wang

OR and NOT Truth Tables

x 0 0 1 1

y 0 1 0 1

OR(x,y) 0 1 1 1

x 0 1

NOT(x) 1 0

CS126 11-14 Randy Wang

Defining a General Boolean Function Using
Three Basic Boolean Functions

• The three basic functions have short-hand notations

• Can compose the three basic boolean functions to form
arbitrary boolean functions [such as g(x,y)=xy+z’]

x
y

x
y x

AND(x,y)=xy=x*y OR(x,y)=x+y NOT(x)=x’

CS126 11-15 Randy Wang

Two Ways of Defining a Boolean Function

• We have learned that any function can be defined in these
two ways: truth table and composition of basic functions

• Why do we need all these different representations?
- Some are easier than others to begin with to design a circuit
- Usually start with truth table (or variants of it)
- Derive a boolean expression from it (perhaps including

simplification)
- Straightforward transformation from boolean expression to circuit

x 0 0 1 1

y 0 1 0 1

XOR(x,y)=x^y 0 1 1 0

XOR(x,y) = x^y = x’y + xy’

CS126 11-16 Randy Wang

More Examples of Boolean Functions
Gluing the truth tables of
all functions of two variables
into one table

For n variables, there
are a total of

functions!
22

n

CS126 11-17 Randy Wang

So How to Translate a Truth Table to a
Boolean Expression (Sum-of-Products)?

CS126 11-18 Randy Wang

Another Example

CS126 11-19 Randy Wang

Parity Function Construction Demo

x: 0 0 0 0 1 1 1 1
y: 0 0 1 1 0 0 1 1
z: 0 1 0 1 0 1 0 1
p: 0 1 1 0 1 0 0 1

zx’ y’ z’x’ y x y’z’+ x y z

CS126 11-20 Randy Wang

Transform a Boolean Expression into a
Boolean Circuit

CS126 11-21 Randy Wang

Simplification Using Boolean Algebra

• Large body of boolean algebra laws can be employed to
simplify circuits

• The previous example:
xy + xy’ = x(y+y’) = x*1 = x

• Much more, but you don’t have to know any of this...

x
y

?

x
y

x

CS126 11-22 Randy Wang

Mini-Summary:
How Do We Make a Combinational Circuit

• Represent input signals with input boolean variables,
represent output signals with output boolean variables

• Construct truth table based on what we want the circuit to
do

• Derive (simplified) boolean expression from the truth table

• Transform boolean expression into a circuit by replacing
basic boolean functions with primitive gates

CS126 11-23 Randy Wang

Outline

• Introduction

• Logic gates

• Boolean algebra

• Implementing gates with switching devices

• Common combinational devices

• Conclusions

CS126 11-24 Randy Wang

Switching Devices

• Any two-state device can be a switching device, examples
are relays, diodes, transistors, and magnetic cores

• A transistor example

• Any boolean function can be implemented by wiring
together transistors

Main input (M)

C
on

tr
ol

le
d

in
pu

t (
C

)

Output (O)

O = M C’

C 0 0 1 1

M 0 1 0 1

O 0 1 0 0

CS126 11-25 Randy Wang

Make a NOT-gate Using a Transistor

M=1

C=x

O = MC’ = 1*x’ = x’

CS126 11-26 Randy Wang

Make an OR-gate Using Transistors

1

x

y

1

x’

x’y’

(x’y’)’=x+y
(DeMorgan’s Law)

CS126 11-27 Randy Wang

Make an AND-gate Using Transistors

1
x

y

y’

1 y’’=y

1

x’

y(x’’)=xy

CS126 11-28 Randy Wang

Outline

• Introduction

• Logic gates

• Boolean algebra

• Implementing gates with switching devices

• Common combinational devices

• Conclusions

CS126 11-29 Randy Wang

Decoder Interface

x
y
z

d0=x’y’z’
d1=x’y’z
d2=x’yz’
d3=x’yz
d4=xy’z’
d5=xy’z
d6=xyz’
d7=xyz

3-8
decoder

example:
if x,y,z = 1,0,1
d5=1
di =0 elsewhere

CS126 11-30 Randy Wang

Deriving Decoder Boolean Expressions

d0=x’y’z’

d1=x’y’z

......

• Can bypass truth table when you’re comfortable with this

x 0 0 0 0 1 1 1 1

y 0 0 1 1 0 0 1 1

z 0 1 0 1 0 1 0 1

d0 1 0 0 0 0 0 0 0

x 0 0 0 0 1 1 1 1

y 0 0 1 1 0 0 1 1

z 0 1 0 1 0 1 0 1

d1 0 1 0 0 0 0 0 0

CS126 11-31 Randy Wang

Decoder Implementation

CS126 11-32 Randy Wang

Decoder Demo

CS126 11-33 Randy Wang

Multiplexer Interface

• I0-I7 are the “data inputs”, x,y,z form the “control” inputs
and are interpreted together as one binary number

• One data input is selected by the control and becomes
output

• For example, if x,y,z are 1,0,1, then M=I5

8-1
MUX

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

x y z

M

CS126 11-34 Randy Wang

Multiplexer Boolean Expression

M=x’y’z’ I 0 + x’y’z I 1 +...+ xyz I 7

• A lot easier in this case to directly derive the boolean
expression instead of starting with a truth table

x 0 0 0 0 ... 1 1

y 0 0 0 0 ... 1 1

z 0 0 1 1 ... 1 1

I 7 0 0 0 0 ... 0 1

...

I 1 0 0 0 1 ... 0 0

I 0 0 1 0 0 ... 0 0

M 0 1 0 1 ... 0 1

CS126 11-35 Randy Wang

Multiplexer Implementation

• M = x’y’z’I 0 + x’y’zI 1 + x’yz’I 2 + x’yzI 3
+ xy’z’I 4 + xy’zI 5 + xyz’I 6 + xyzI 7

zyx I 0 I 1 I 7

M

CS126 11-36 Randy Wang

An Adder Bit-Slice Interface

• Add three 1-bit numbers x, y, z

• s is the 1-bit sum

• c is the 1-bit carry

x y z

c

s

s

c

CS126 11-37 Randy Wang

An Adder Bit-Slice Implementation

• See slides 11-16, 11-17, and 11-18 for details of the odd
parity circuit and majority circuit

CS126 11-38 Randy Wang

An N-bit Adder Made with Bit-Slices

+

CS126 11-39 Randy Wang

Outline

• Introduction

• Logic gates

• Boolean algebra

• Implementing gates with switching devices

• Common combinational devices

• Conclusions

CS126 11-40 Randy Wang

Abstractions and Encapusulation

n-bit adder

1-bit
adder

majorit y parit y

x
y

x
y

x

Gates

All the lessons that we learned for ADT
apply here to hardware as well!

transistors

CS126 11-41 Randy Wang

Building a Computer Bottom Up

• Circuit design: specifying the interconnection of
components such as resistors, diodes, and transistors to
form logic building blocks

• Logic design: determining how to interconnect logic
building blocks such as logic gates and flip-flops to form
subsystems

• System design (or computer architecture): specifying the
number, type, and interconnection of subsystems such as
memory units, ALUs, and I/O devices

CS126 11-42 Randy Wang

What We Have Learned

• How to build basic gates using transistors

• How to build a combinational circuit
- Truth table
- Sum-of-product boolean expression
- Transform a boolean expression into a circuit of basic gates

• The functionality of some common devices and how they
are made
- Decoder
- Multiplexer
- Bit-slice adder

• You’re not responsible for
- Boolean algebra laws, or circuit simplification

