CS 126 Lecture A3: Boolean Logic

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

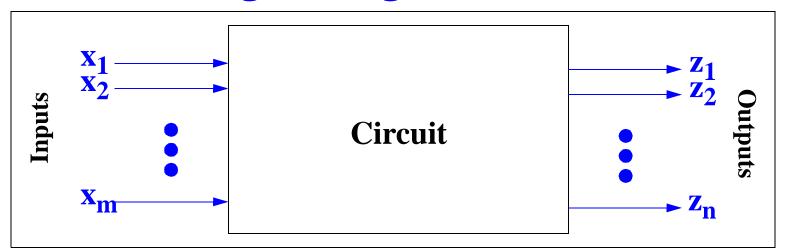
Where We Are At

- We have learned the abstract <u>interface</u> presented by a machine: the instruction set architecture
- What we will learn: the <u>implementation</u> behind the interface:
 - Start with switching devices (such as transistors)
 - Build logic gates with transistors
 - Build combinational circuit (memory-less) devices using gates
 - Next lecture: build sequential circuit (memory) devices
 - The one after: glue these devices into a computer

Digital Systems

- ... however, the application of digital logic extends way beyond just computers.
- Today, digital systems are replacing all kinds of analog systems in life (data processing, control systems, communications, measurement, ...)
- What is a digital system?
 - Digital: quantities or signals only assume discrete values
 - Analog: quantities or signals can vary continuously
- Why digital systems?
 - Greater accuracy and reliability

Digital Logic Circuits

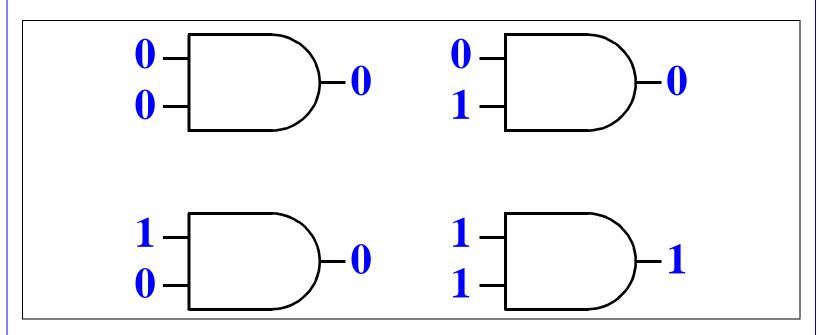


• The heart of a digital system is usually a digital logic circuit

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

An AND-Gate

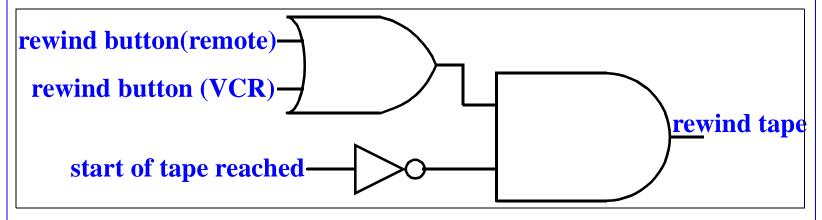


- A smallest useful circuit is a logic gate
- We will connect these small gates into larger circuits

An OR-Gate and a NOT-Gate

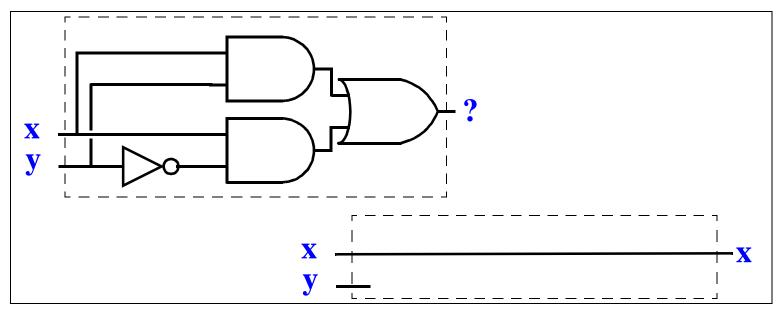
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} -1 \end{bmatrix}$

Building Circuits Using Gates



- Can implement <u>any</u> circuit using <u>only</u> AND, OR, and NOT gates
- But things get complicated when we have lots of inputs and outputs...

Problems



- Many different ways of implementing a circuit (the two above circuits turn out to be the same!)
- How do we find the best implementation? Need better formalism
- Also need more compact representation
- This leads to the study of boolean algebra

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Boolean Algebra

- History
 - Developed in 1847 by Boole to solve mathematic logic problems
 - Shannon first applied it to digital logic circuits in 1939
- Basics
 - **Boolean variables**: variables whose values can be 0 or 1
 - <u>Boolean functions</u>: functions whose inputs and outputs are boolean variables
- Relationship with logic circuits
 - Boolean variables correspond to signals
 - Boolean functions correspond to circuits

Defining a Boolean Function with a Truth Table

×	0	0	1	1
Y	0	1	0	1
AND(x,y)	0	0	0	1

- A systematic way of specifying a function value for <u>all</u> possible combination of input values
- A function that takes 2 inputs has 2x2 columns
- A function that takes n inputs has 2ⁿ columns
- This particular example is the AND-function

OR and NOT Truth Tables

x	0	0	1	1
Y	0	1	0	1
OR(x,y)	0	1	1	1

×	0	1		
NOT(x)	1	0		

CS126 11-13 Randy Wang

Defining a General Boolean Function Using Three Basic Boolean Functions

- The three basic functions have short-hand notations
- Can compose the three basic boolean functions to form arbitrary boolean functions [such as g(x,y)=xy+z']

Two	Wavs	of Defin	ning a	Boolea	n Function
		J			

×	0	0	1	1
Y	0	1	0	1
$XOR(x,y)=x^y$	0	1	1	0

$$XOR(x,y) = x^y = x^y + xy'$$

- We have learned that any function can be defined in these two ways: truth table and composition of basic functions
- Why do we need all these different representations?
 - Some are easier than others to begin with to design a circuit
 - Usually start with truth table (or variants of it)
 - Derive a boolean expression from it (perhaps including simplification)
 - Straightforward transformation from boolean expression to circuit

More Examples of Boolean Functions

Sixte	er.	١ (lif	fer	ent functions Gluing the truth tables of
	0		1		all functions of two variables
_	0	1	0	1	into one table
	0	0	0	0	constant 0
	0	0	0	1	AND (xy) [decode 11 = 3]
	0	0	1	0	[decode 10 = 2]
	0	0	1	1	x
	0	1	0	0	[decode 01 = 1]
	0	1	0	1	У
(0	1	1	0	XOR (x^y)
	0	1	1	1	OR (x+y)
	1	0	0	0	NOR ("not or") [decode 00 = 0]
	1	0	0	1	== ("not xor")
	1	0	1	0	For n variables, there
	1	0	1	1	are a total of
	1	1	0	0	NOT $x(x')$
	1	1	0	1	2
	1	1	1	0	NAND ("not and") functions!
	1	1	1	1	constant 1

So How to Translate a Truth Table to a Boolean Expression (Sum-of-Products)?

- form AND terms for each 1 in the function use v if it corresponds to v = 1 use v' (NOT v) if it corresponds to v
- OR the terms together

```
Ex: majority function
```

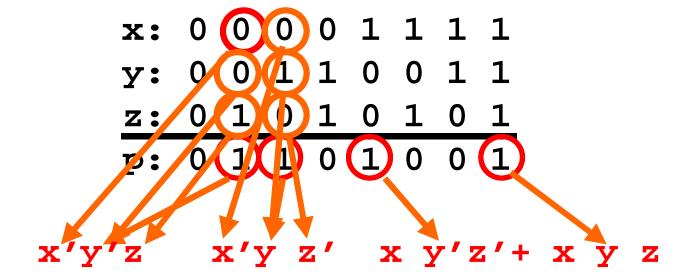
```
x: 0 0 0 0 1 1 1 1 
y: 0 0 1 1 0 0 1 1 
z: 0 1 0 1 0 1 0 1 1 
m: 0 0 0 1 0 1 1 1
```

$$m = x'yz + xy'z + xyz' + xyz$$

Another Example

Example: odd parity function

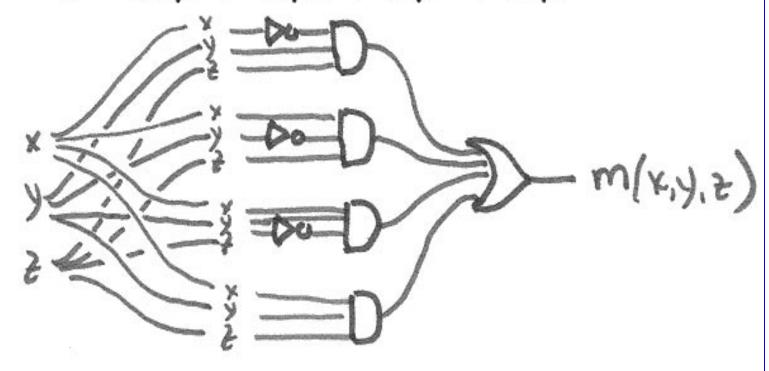
Parity Function Construction Demo



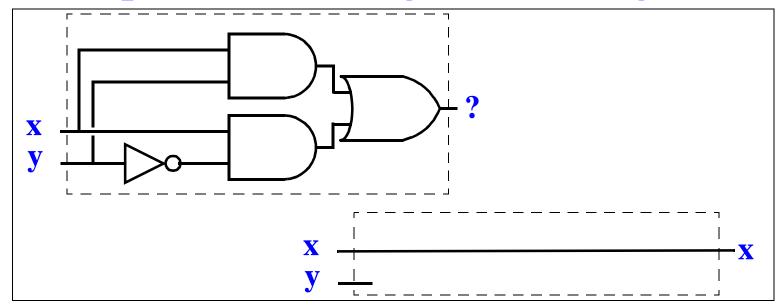
Transform a Boolean Expression into a Boolean Circuit

Use sum-of-products form of function Example: majority

m = x'yz + xy'z + xyz' + xyz



Simplification Using Boolean Algebra



- Large body of boolean algebra laws can be employed to simplify circuits
- The previous example:

$$xy + xy' = x(y+y') = x*1 = x$$

• Much more, but you don't have to know any of this...

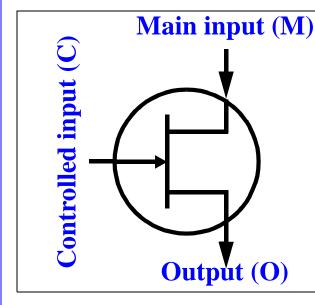
Mini-Summary: How Do We Make a Combinational Circuit

- Represent input signals with input boolean variables, represent output signals with output boolean variables
- Construct truth table based on what we want the circuit to do
- Derive (simplified) boolean expression from the truth table
- Transform boolean expression into a circuit by replacing basic boolean functions with primitive gates

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Switching Devices

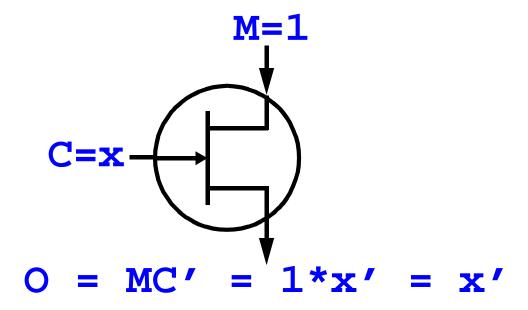


С	0	0	1	1
M	0	1	0	1
0	0	1	0	0

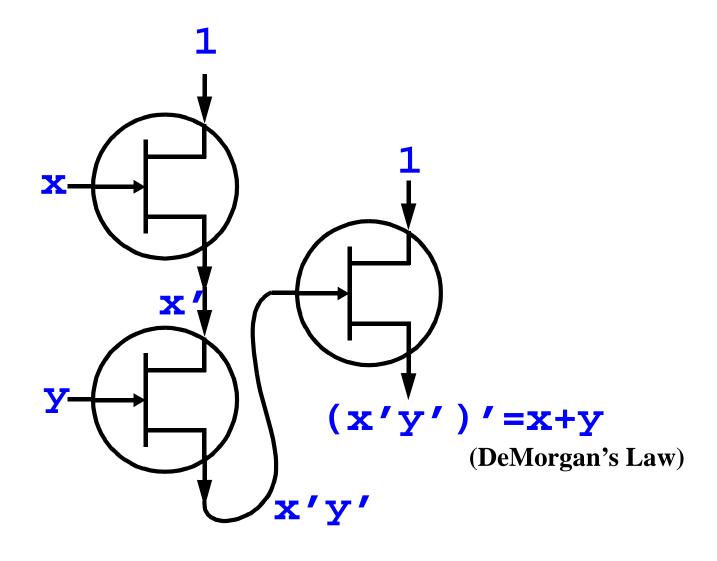
$$O = M C'$$

- Any two-state device can be a switching device, examples are relays, diodes, transistors, and magnetic cores
- A transistor example
- Any boolean function can be implemented by wiring together transistors

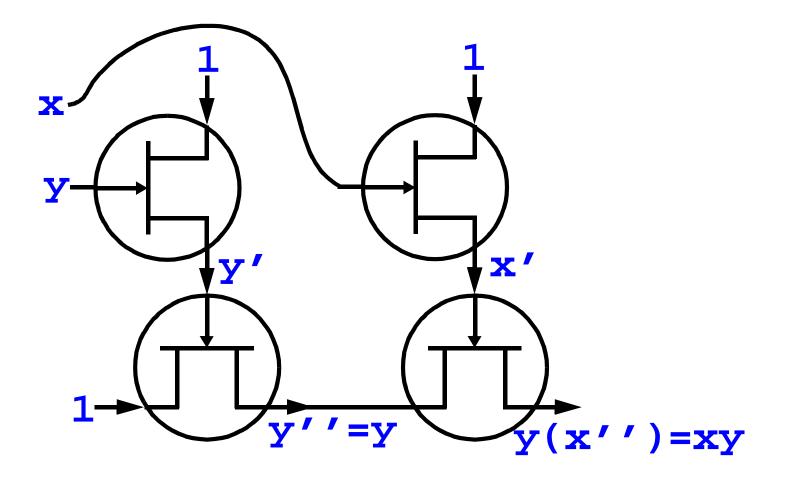
Make a NOT-gate Using a Transistor



Make an OR-gate Using Transistors



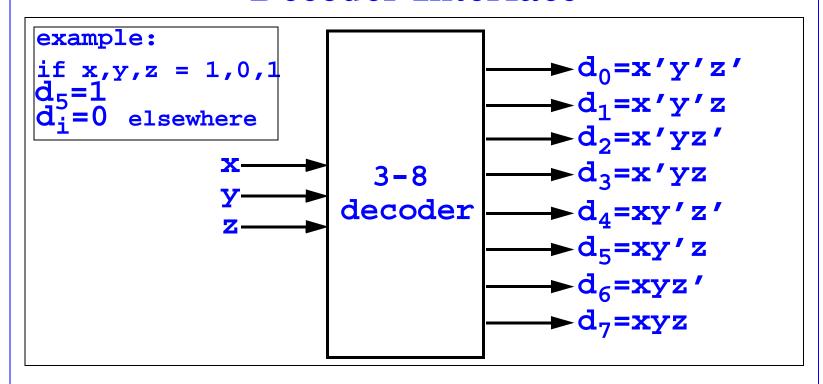
Make an AND-gate Using Transistors



Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Decoder Interface



DECODER

N 'inputs'
2^N 'outputs'

Z" boolean functions

▶Turns on precisely one 'output' address is encoded in 'inputs'

Deriving Decoder Boolean Expressions

x	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
d ₀	1	0	0	0	0	0	0	0

$$d_0=x'y'z'$$

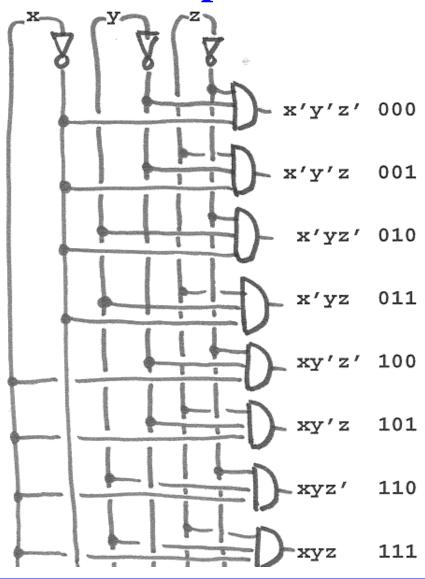
x	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
z	0	1	0	1	0	1	0	1
d_1	0	1	0	0	0	0	0	0

$$d_1=x'y'z$$

• • • • •

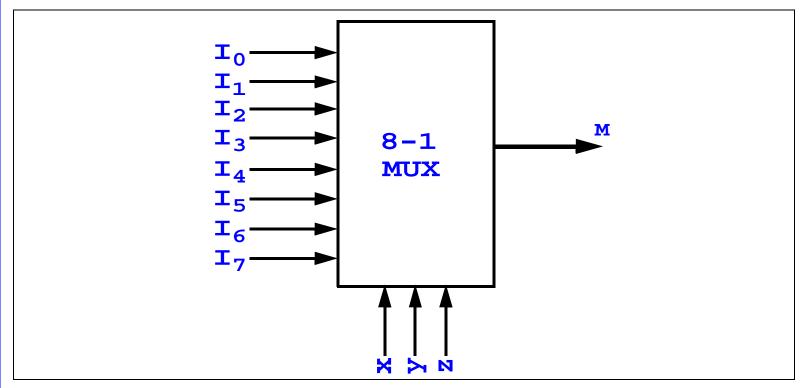
• Can bypass truth table when you're comfortable with this

Decoder Implementation



Decoder Demo 3-Bit Decoder x'y'z' x'yz xy'z' xy'z xyz' • Decoder Fast

Multiplexer Interface



- I₀-I₇ are the "data inputs", x,y,z form the "control" inputs and are interpreted together as one binary number
- One data input is selected by the control and becomes output
- For example, if x,y,z are 1,0,1, then M=I₅

Multiplexer Boolean Expression

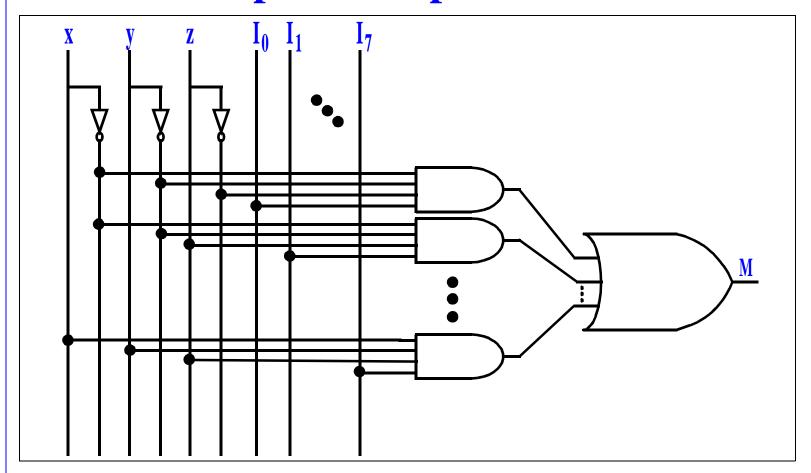
x	0	0	0	0	• • •	1	1
У	0	0	0	0	• • •	1	1
Z	0	0	1	1	• • •	1	1
I ₇	0	0	0	0	• • •	0	1
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
I ₁	0	0	0	1	• • •	0	0
IO	0	1	0	0	• • •	0	0
M	0	1	0	1	• • •	0	1

$$M=x'y'z'I_0 + x'y'zI_1 + \dots + xyzI_7$$

• A lot easier in this case to directly derive the boolean expression instead of starting with a truth table

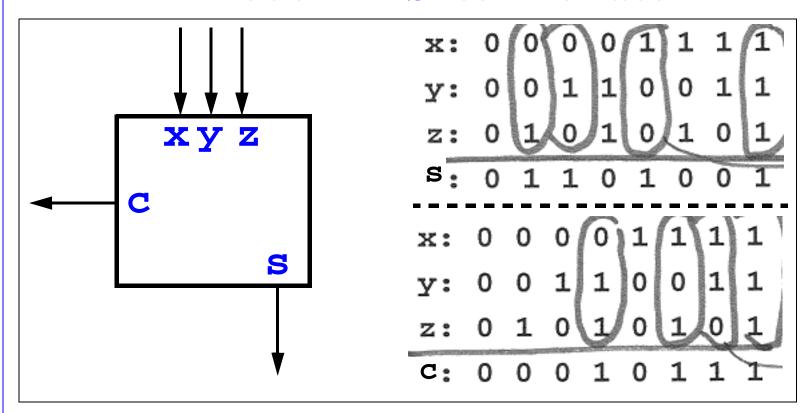
CS126 11-34 Randy Wang

Multiplexer Implementation



•M = $x'y'z'I_0 + x'y'zI_1 + x'yz'I_2 + x'yzI_3$ + $xy'z'I_4 + xy'zI_5 + xyz'I_6 + xyzI_7$

An Adder Bit-Slice Interface



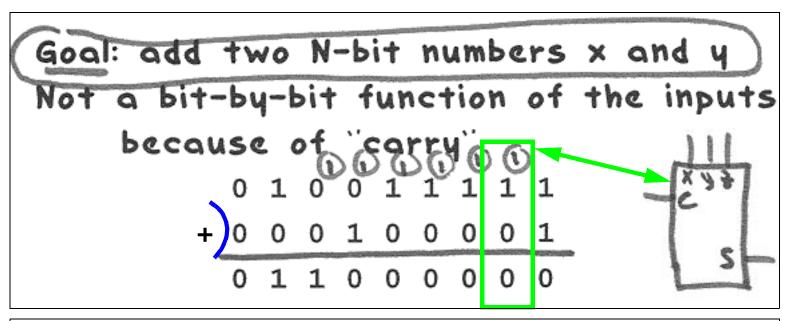
- Add three 1-bit numbers x, y, z
- s is the 1-bit sum
- c is the 1-bit carry

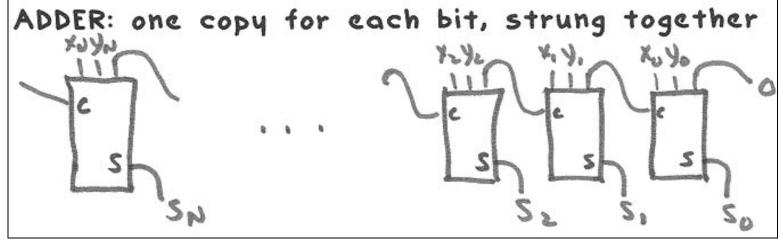
An Adder Bit-Slice Implementation



• See slides 11-16, 11-17, and 11-18 for details of the odd parity circuit and majority circuit

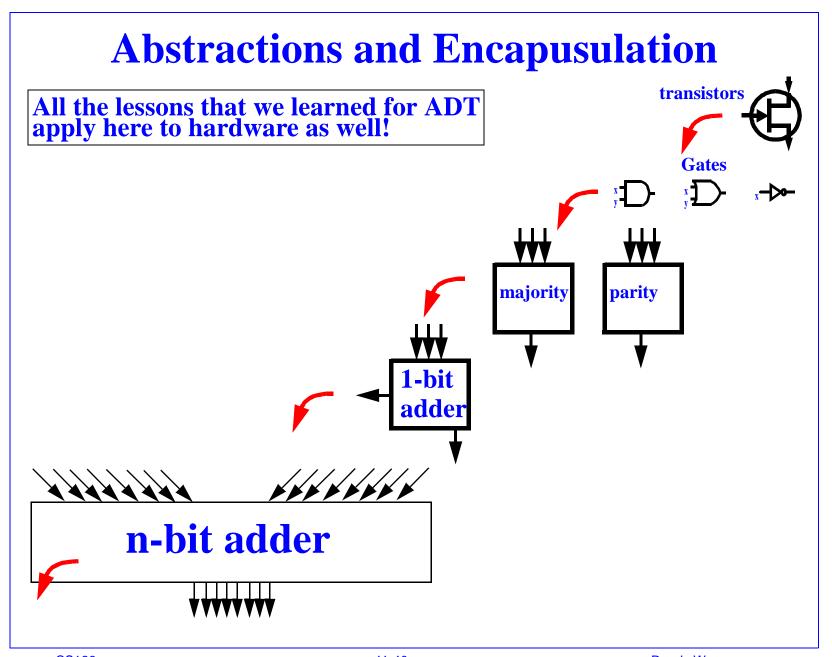
An N-bit Adder Made with Bit-Slices





Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions



Building a Computer Bottom Up

- <u>Circuit design</u>: specifying the interconnection of components such as resistors, diodes, and transistors to form logic building blocks
- Logic design: determining how to interconnect logic building blocks such as logic gates and flip-flops to form subsystems
- System design (or computer architecture): specifying the number, type, and interconnection of subsystems such as memory units, ALUs, and I/O devices

CS126 11-41 Randy Wang

What We Have Learned

- How to build basic gates using transistors
- How to build a combinational circuit
 - Truth table
 - Sum-of-product boolean expression
 - Transform a boolean expression into a circuit of basic gates
- The functionality of some common devices and how they are made
 - Decoder
 - Multiplexer
 - Bit-slice adder
- You're **not** responsible for
 - Boolean algebra laws, or circuit simplification