
CS 126 Lecture A2:
TOY Programming

CS126 10-1 Randy Wang

Outline

• Review and Introduction

• Data representation

• Dynamic addressing

• Control flow

• TOY simulator

• Conclusions

CS126 10-2 Randy Wang

What We Have Learned About TOY

• What’s TOY, what’s in it, how to use it.
- von Neumann architecture

• Data representation
- Binary and hexadecimal

• TOY instructions
- Instruction set architecture

• Example TOY programs
- Simple machine language programming

CS126 10-3 Randy Wang

What We Haven’t Learned

• How to represent data types other than positive integers?

• How to represent complex data structures at machine
level?

• How to make function calls at machine level?

• What’s the relationship among TOY, C programming, and
“real” computers?

CS126 10-4 Randy Wang

Outline

• Review and Introduction

• Data representation

• Dynamic addressing

• Control flow

• TOY simulator

• Conclusions

CS126 10-5 Randy Wang

Represent Negative Numbers
Using “Two’s Complement”

• Represent -N with an n-bit 2’s complement: 2n - N

• To calculate -N , start with N, flip bits, and add 1

CS126 10-6 Randy Wang

Examples

CS126 10-7 Randy Wang

Arithmetic
• Addition is carried out as if all numbers were positive

• Subtraction -N is done with addition of N

15

CS126 10-8 Randy Wang

Nice and Not-So-Nice Properties

• Nice properties
- 0 is 0
- -0 and +0 are the same

• Not-so-nice property
- Can represent one more negative number than positive
numbers

- With n bits, can represent:
 2n-1 - 1 positive numbers (2n-1 - 1 is maximum)
 0
 2n-1 negative numbers (-2n-1 is minimum)
- A2-3 of course reader is wrong! (Replace 16s with 15s)

• Alternatives other than 2’s complement exist

CS126 10-9 Randy Wang

Other Primitive Data Types

• “double” type, “long long” type (for most compilers)

CS126 10-10 Randy Wang

Outline

• Review and Introduction

• Data representation

• Dynamic addressing

• Control flow

• TOY simulator

• Conclusions

CS126 10-11 Randy Wang

The Need for Dynamic Addressing

• All we have so far: “hard-wired” addresses inside
instructions (R1<-MEM[D0])

• Many cases where guessing address at compile-time is
impossible
- case 1: possible for compiler to hard-wire address of a
- case 2: difficult for compiler to hard-wire address of a[i]
- case 3: impossible for compiler to guess address at p

• Solution:
- Compute address at run time
- Put address in a register
- Augment instruction format to use address register

int a;

int a[100];

int *p;

p = (int *) malloc(sizeof *p);

1 3

2

CS126 10-12 Randy Wang

Review: Instruction Format 2

CS126 10-13 Randy Wang

Indexed Addressing

• Example: A923 means MEM[R[2]+R[3]]<-R[1]
(9 is binary 1001)

0

1

CS126 10-14 Randy Wang

Why “Stealing” One Bit is OK

• We only have 8 registers

• Only three bits are necessary

• But 4 bits allocated to dest register field

• So we can “steal” 1 bit

0

1

CS126 10-15 Randy Wang

C Program for Fibonacci Array

• We will see how to implement the line in red using indexed
addressing in TOY

#include <stdio.h>

main()
{

int a[16];
int n, i, j, k;

n = 15;
a[0] = 1;
a[1] = 1;
i = 0;
j = 1;
k = 2;

do {
a[k] = a[i]+a[j];
i++;
j++;
k++;
n--;

} while (n > 0);

for (i = 0; i < 16; i++) {
printf("%d ", a[i]);

}
printf("\n");

}

CS126 10-16 Randy Wang

TOY Version of Fibonacci Program

p = &a[0];

CS126 10-17 Randy Wang

Food for Thought

• Self-modifying programs
• Special purpose computer -> general purpose computer ->

stored program computer -> self-modifying stored program computer
• Are some machines intrinsically more powerful than others?? Stay

tuned.

CS126 10-18 Randy Wang

Outline

• Review and Introduction

• Data representation

• Dynamic addressing

• Control flow

• TOY simulator

• Conclusions

CS126 10-19 Randy Wang

Branches and Looping

CS126 10-20 Randy Wang

The Halting Problem
• Why doesn’t the compiler detect infinite loops and tell me?

CS126 10-21 Randy Wang

Function Calls
• Functions can be written and used by different people

(one possibility)

CS126 10-22 Randy Wang

Example Function

Takes care of b==0

CS126 10-23 Randy Wang

Example Caller

CS126 10-24 Randy Wang

Function Call Demo

CS126 10-25 Randy Wang

The Use of Registers vs. Memory for
Function Calls

• Stack is implemented using main memory

• Review:
- Call: push environment (registers and PC)
- Call: push function parameters
- Inside a function: look for parameters on the stack
- Return: restores environment by popping stack

• Registers can still be used as optimizations

CS126 10-26 Randy Wang

Outline

• Review and Introduction

• Data representation

• Dynamic addressing

• Control flow

• TOY simulator

• Conclusions

CS126 10-27 Randy Wang

Availability

• Better yet, download java version from announcement
page

• Edit “toy.html”, reopen it in browser

CS126 10-28 Randy Wang

TOY Simulator (Part 1:fetch, incr, decode)

Initialize memory
by reading from
standard in

Fetch
Increment decode

CS126 10-29 Randy Wang

TOY Simulator (Part 2: execute)

CS126 10-30 Randy Wang

TOY Dump

CS126 10-31 Randy Wang

Outline

• Review and Introduction

• Data representation

• Dynamic addressing

• Control flow

• TOY simulator

• Conclusions
- Relationships among machine language programming, C
programming, TOY machine, and “other” machines

CS126 10-32 Randy Wang

Engineering and Theoretical Implications
of Simulator

• Theoretically, any von Neumann machine can simulate any
other von Neumann machine--all of them have the same
“power”!! (More later)

CS126 10-33 Randy Wang

What We Have Learned

• Two’s complement
- How to represent negative numbers
- How to perform addition and subtraction
- Understand overflow

• How to use indexed addressing to access data structures

• Function calls
- Passing parameters in registers
- Save and restore PC

