CS 126 Lecture A1: TOY Machine

Introduction

- Toy machine
- Machine language instructions
- Example machine language programs
- Conclusions

Brief History Leading to the Dominance of von Neumann Architecture

- 1940s, Atanasoff, Iowa State, first <u>special-purpose</u> electronic computer, binary representation of numbers
- ~1946, ENIAC, Eckert and Mauchly, UPenn, first general-purpose electronic computer
 - 100 ft long, 8.5 ft high, several ft wide, 18000 vacuum tubes
 - conditional jumps, **programmable**
 - code: setting switches, data: punch cards
 - Used to compute artillery firing tables
- 1944, von Neumann, visited ENIAC, the "<u>von Neumann Memo</u>", concept of a "stored-program" computer
- 1949, Wilkes, EDSAC, first stored-program computer
- 1946, von Neumann, Goldstine, Burks, IAS machine, Princeton, the report pioneered most modern computer architecture concepts

Why Study Machine Language Programming Today

- Learn how computers really work
- There are still (a few) situations where machine language programming is necessary
- The first step towards understanding how to build better computers

- Introduction
- <u>Toy machine</u>
- Machine language instructions
- Example machine language programs
- Conclusions

- ALU (arithmetic logic unit) -- executes instructions to manipulate date
- 8 registers -- the fastest form of storage, on-chip in modern computers, used as scratch space during computation
- PC (program counter) -- a register with special meaning, keeps track of the next instruction to be executed
- 256 16-bit words of memory -- stores both code and data

Binary Numbers

- Machine consists of two-state (`ON-OFF`) switches and lights
- Use binary encoding to represent values
 Ex: integers

$$.6375 = 0001100011100111$$

	Hexadecimal Numbers										
• He	xadea	imal	(base	2-16) r	notat	ion pi	rovide	.s sha	orthand		
	bin	ary c	ode ·	four t	oits c	it a	time				
	0000	0001	0010	0011	0100	0101	0110	0111			
	0	1	2	3	4	5	6	7			
	1000	1001	1010	1011	1100	1101	1110	1111			
	8	9	A	В	C	D	E	F			
Ex:											
•	.6375 = 0001100011100111										
•	. 1 8 E 7										
•	6375	= 1	*16 ³ +	8*16	² + 14	*16 +	7*16	0			
•		= 4	096 +	2048	+ 2	24 +	7				

Contents of machine in hexadecimal ("dump")

PC: 0010

			2)					ш Ю				
R7:	3 00A0	0000	0000	0000	0007	000F	CEDE				0000	0000	0000
R6:	2 000	0000	0000	7211	0006	000E	ACED			*	FOOD	0000	0000
R5:	1 000	0000	0000	A121(0005	000D	CAFE				0000	1111	0000
R4 :	040	0000	0000	1121	0004	0000	FACE				0000	EEEE	0000
R3 :	0010	0000	0000	A120	0003	000B	FE10				DEF 0	1111	0000
R2 :	3 B70(0000	0000	1121	0002	000A	0000				9ABC	EEEE	0000
R1:	0788	0000	0000	9120	0001	6000	0000				5678	0000	F1F5
R0:	000	 0000	0000	9222	0000	0008	0000				1234	0000	B1B2
		 :00	.80	10:	18:	20:	28:	•	0	•	王8:	÷04	。 8 日

- Programmers still look at dumps, even today
- Contents of memory
- record of what program has done
- edetermines (with PC) what machine will do

GO button

- * loads PC from address switches
- * initiates FETCH-INCREMENT-EXECUTE cycle
- * machine runs until halt instruction hit

EETCH (get instruction from memory into CPU) INCREMENT program counter (PC) EXECUTE (may require data from or to memory)

Output:

read contents of memory word in lights
 system call can write output
 to an output device (tty)

- Introduction
- Toy machine
- Machine language instructions
- Example machine language programs
- Conclusions

TOY Instructions

 Encode each of these instructions using 16 bits

• Need to divide up the 16 bits to denote components of each type of instructions

• Instruction formats different ways of dividing up the 16 bits

CS126

Other Logical Operations

- Introduction
- Toy machine
- Machine language instructions
- Example machine language programs
- Conclusions

Set PC to 10; Press GO. TOY computes the value. Ex: TOY code for C expression t = b*b - 4*a*c 10: 91D1 3111 B204 93D0 94D2 3223 3224 2112 memory loc Do is used for storing a sample TOY program o: arithmetic Suppose memory locations 10-19 contain D3 for t D2 for c Di for b Step-by-step trace: 18:[¶] A1D3 0000

q	b*b	4	ŭ	Ũ	4*a	(4*a) *c	(b*b) - (4*a*c)	(b*b - 4*a*c)		
۱ ۷	۱ ۷	۱ ۷	۱ ۷	۱ ۷	۱ ۷	۱ ۷	۱ V	۱ ۷	ц.	
R1	R1	R 2	R3	R4	\mathbb{R}^2	\mathbb{R}^2	R 2	Ч	hal	
91D1	3111	B204	93D0	94D2	3223	3224	2112	A1D3	0000	
10:	11	12:	13:	14:	15:	16:	17:	18:	19:	

ð

arithmetic	
more	
::	
program	
τογ	
sample	

10: B001 B200 B101 1221 1110 1221 1110 1221 18: 1110 1221 1110 1221 1110 1221 0000 0000 Ex: Suppose memory locations 10-1F contain

- Set PC to 10. Press GO. What happens?
- Step-by-step trace:

+ 6 = 21	4	4 +	2 + 3	tes 1 +	Compu
			halt	0000	1E:
0015	R1	R2 +	R2 <-	1221	1D:
0006	R0 (R1 +	R1 <-	1110	1C:
000E	R1	R2 +	R2 <-	1221	1B:
0005	R0 (R1 +	R1 <-	1110	1A:
0003	Rl	R2 +	R2 <-	1221	19:
004	R0 (R1 +	R1 <-	1110	18:
0000	Rl	R2 +	R2 <-	1221	17:
003	RO	R1 +	R1 <-	1110	16:
0003	R1	R2 +	R2 <-	1221	15:
002	RO	R1 +	R1 <-	1110	14:
0001	R1	R2 +	R2 <-	1221	13:
1001	U	0001	R1 <-	B101	12:
0000		0000	R2 <-	B200	11:
		0007	R0 <-	B001	10:

Sample TOY program 2: loop

• Suppose me	emory locations 10-17 contain
10: B106	5 B200 B001 1221 2110 6113 0000 0000
• Set PC to	10. Press GO. What happens?
& Step-by-st	tep trace:
10: B106	$r_{\rm r} = 0006 0006 {\rm Sum}$
11: B200	0 R2 <- 0000 0000
12: B001	R0 <- 0001
11: 1221	R2 <- R2 + R1 0006
14: 2110	R1 <- R1 - R0 0005
15: 6 13	jump if $(R1 > 0)$
13: 1221	R2 <- R2 + R1 000B
14: 2110	R1 <- R1 - R0 0004
15: 6113	3 jump if (R1 > 0)
13: 1221	R2 <- R2 + R1 000F
14: 2110) R1 <- R1 - R0 0003
15: 6113	3 jump if (R1 > 0)
13: 1221	R2 <- R2 + R1 0012
14: 2110) R1 <- R1 - R0 0002
15: 6113	jump if (R1 > 0)
13: 1221	R2 <- R2 + R1 0014
14: 2110) R1 <- R1 - R0 0001
15: 6113	3 jump if (R1 > 0)
13: 1221	R2 <- R2 + R1 0015
14: 2110) R1 <- R1 - R0 0000
15: 6113	3 jump if (R1 > 0)
16: 0000) halt
Computes	
N + ()	N-1 + + 3 + 2 + 1 = $N(N+1)/2$
for *any*	value N loaded into RI

Horner's Method

Sam	ple T	OY	Pr	ogr	am	3: H	forner's Method
• Effic	cient c	algor	ith	m (Ho	orner	's me	thod):
*2****C39222*****	rewri	te	ax^	3+PX	^2+c	x+d o	as(((ax+b)x+c)x+d)
10:	9430	R4	<-	M[30]]	A000	x
11:	9531	R5	<-	M[31]]	0002	a
12:	3554	R5	<-	R5 *	R4	0014	a*x
13:	9632	R6	<-	M[32]]	0003	b
14	1556	R5	<-	R5 +	R6	0017	a*x+b
15:	3554	R5	<-	R5 *	R4	00DC	(a*x+b) *x
16:	9633	R6	<-	м[33]]	0009	C
17:	1556	R5	<-	R5 +	R6	00E5	(a*x+b)*x + c
18:	3554	R5	<-	R5 *	R4	0956	((a*x+b)*x+c)*x
19:	9634	R6	<-	M[34]]	0007	đ
1A:	1556	R5	<-	R5 +	Rб	095D	((a*x+b)*x+c*x)+d
1B:	4502	wri	te	R5 to	o tty	7	

Sample TOY program 4: bit manipulation

Ex: suppose that memory locations 10-15 contain 10: 911F B000 1210 1310 E203 E30A C323 B401 18: D334 F101 C113 0000 0000 0000 0000 0684 *Set PC to 10. Press GO. What happens?

Step-by-step:

and the second se	the state of the s					
10:	911F	R1	<-	0684	0000011010000100	R1 is LFBSR content
11:	в000	R0	<-	0000		
12:	1210	R2	<-	R1 + R0	0000011010000100	R2 is a copy of R1
13:	1310	R3	<-	R1 + R0	0000011010000100	So is R3
14:	E203	R2	<-	R2 >> 3	000000011010000	Get 3rd bit to the right end
15:	E30A	R3	<-	R3 >> 10	000000000000000000000000000000000000000	Get 10th bit to the right end
16:	C323	R3	<-	R2 ^ R3	000000011010001	
17	B401	R4	<-	0001	0000000000000001	Only right-most bit of xor
18:	D334	R3	<-	R3 & R4	00000000000000001	
19:	F101	R1	<-	R1 << 1	0000110100001000	Left shift LFBSR
1A:	C113	R1	<-	R1 ^ R3	0000110100001001	Put in the new right-most bi
1B:	0000	hal	Lt			
					* * ·	

Simulates one step of LFBSR of Lecture 1

- Introduction
- Toy machine
- Machine language instructions
- Example machine language programs
- <u>Conclusions</u>

Basic Characteristics of TOY Machine TOY is a "general purpose" computer "'von Neumann" machine • instructions and data in same memory • can change program (control) w/o rewiring immediate applications

profound implications

- sufficient power to perform any computation
 limited only by amount of memory (and time)
 [stay tuned]
- similar to real machines

