
CS 126 Lecture P6:
Recursion
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Why Learn Recursion?

• Master a powerful programming tool

• Gain insight of how programs (function calls) work
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Outline

• What is recursion?

• How does it work?

• Examples



Indentation level denotes
statements belonging
to same “invocation”
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Demo convert()
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Outline

• What is recursion?

• How does it work?

• Examples
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Function “Environment”

• When a function executes, it lives in an “environment”

• What’s an “environment”?
- Value of local variables (scratch space)
- Which statement the computer is executing currently
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Implementing Recursion
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Demo Use of Stacks to Implement
Function Calls
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Removing Recursion
{

base case;

some code;

recursion;

more code;

}

{
repeat {

some code;
push environment;

}
base case;
repeat {

pop environment;
more code;

}
}
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Removing Recursion
{

base case;

some code;

recursion;

more code;

}

{
repeat {

some code;
push environment;

}
base case;
repeat {

pop environment;
more code;

}
}
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Tail Recursion

• If single recursive call is the last action, don’t need a stack

• Why? 
- nothing to do after recursion => no need to remember stuff => 
no need for stack
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Possible Pitfall with Recursion
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Possible Pitfall with Recursion
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Outline

• What is recursion?

• How does it work?

• Examples
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Divide-and-Conquer

L RM L RM L RM
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Finding Root via Bisection
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Bisection for Integer Functions
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Binary Search

• Observations:
- An array is a function mapping integer indices to contents
- A sorted array is a monotonically increasing function

v

a[k]

a[k]-v

k

x
f(x)
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Traveling Salesman Problem
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Traveling Salesman Problem
set of cities whose order
haven’t been decided

set of cities whose order
have been decided

try all undecided cities
as the Nth stop

Number of nodes whose positions
have not been decided

Visit ith city as the last (Nth) step

Decide the positions of the
other undecided cities
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Traveling Salesman Problem
visit(3) [1 2  3]{}

v isit(2) [3  2 ]{1} v isit(2) [1  3 ]{2} v is it(2) [1 2 ]{3}

v is it(1) [3]{2  1} v isit(1) [2 ]{3  1}
v isit(1) [1 ]{3  2} v isit(1) [3 ]{1  2}

visit(1) [1 ]{2  3} v is it(1) [2]{1  3}

nodes w hose posit ions
are not decided

nodes w hose positions
are a lready decided

num ber of
undecided  nodes
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Intuition of Algorithm

• AB is a smaller dragon curve by itself

• CB = AB

• Therefore BC is the reverse of AB

• Therefore every turn along BC is the opposite of the 
corresponding turn on AB

A

B

C

Right turn

Left turn

Left turn
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Recursive Program for Dragon Curve

A

B

C

dragon(n-1)

nogard(n-1)

L()
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Backwards Dragon Curve

Reverse
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dragon  Demo



(dup repliates stack top)

replicates top before popping for comparison

pushes two copies of (n-1) for the two recursive calls

all arguments and “scratch variables” are on the stack!
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What We Have Learned

• How recursion works
- A recursive call is no different from a “regular” call
- It involves saving the old environment for later return

• Learn to trace the execution of given recursive programs 
(using pictures)

• Learn to write simple recursion 
- What’s the base case?
- What’s the induction case?


