CS 126 Lecture P6: Recursion

Why Learn Recursion?

- Master a powerful programming tool
- Gain insight of how programs (function calls) work

Outline

- What is recursion?
- How does it work?
- Examples

$$
\begin{aligned}
& \text { Number conversion } \\
& \text { To convert an integer } N \text { to binary: } \\
& \text { stop if } N \text { is o } \\
& \text { write "' if } N \text { odd, "o" if } N \text { even } \\
& \text { move left one position } \\
& \text { - convert } N / 2
\end{aligned}
$$

- Computer prints from left to right
- need to convert N/2, then print right bit

```
void convert(int N)
    {
        if (N/2 > 0) convert(N/2);
        printf("%c", '0'+ N % 2);
    }
Proof of correctness: N = 2*(N / 2) +(N % 2)
```

 convert (42)

Indentation level denotes statements belonging to same "invocation"
convert (5)
convert (2)
convert (1)
printf("1") |
printf("0")
intf("1")
printf("0")
printf("1")
printf("0")

Works to convert to any base (change " 2 " to "b" everywhere in code)

Demo convert ()

Outline

- What is recursion?
- How does it work?
- Examples

Function 'Environment"

- When a function executes, it lives in an "environment"
- What's an "environment"?
- Value of local variables (scratch space)
- Which statement the computer is executing currently

Implementing Recursion

Any function call requires

- set the values of the parameters
- save the "environment"
- jump to the first instruction in the function execute the function
- restore the "environment"
- continue at the instruction after the call 'return address" (part of environment)

A:

- Use pushdown stack for save/restore call: push environment return: restore environment from stack

Demo Use of Stacks to Implement Function Calls

Stack

Removing Recursion

$\{$
base case;
some code;
recursion;
more code;
$\}$

repeat \{
some code;
push environment; \} base case; repeat \{
pop environment;
more code;
\}
\}

We can remove recursion from any function by using an explicit stack

- Helps us understand nature of the computation (no other reason to do so)

Tail Recursion

- If single recursive call is the last action, don't need a stack
- Why?
- nothing to do after recursion => no need to remember stuff => no need for stack

Possible Pitfall with Recursion

Simple recursive programs

```
can consume excessive resources
```

Ex: Compute binomial coefficients

```
int f(int N, int k)
    {
        if ((k<0) || (k > N)) return 0;
        if (N == 0) return 1;
    return f(N-1, k) + f(N-1, k-1);
```

- Seems to run for a long time to compute $f(30,15)$.

Q: Why?
A: Recomputes intermediate results

Possible Pitfall with Recursion

- Simpler example: hard way to compute $2^{\wedge} N$ int f (int N) \{
if ($N==0$) return 1; return $\mathrm{f}(\mathrm{N}-1)+\mathrm{f}(\mathrm{N}-1)$;

Takes time proportional to $2 \sim N$

- DO NOT use these programs!

Solution: DYNAMIC PROGRAMMING
save away intermediate results
see sedaewick. section 2.2

Outline

- What is recursion?
- How does it work?
- Examples

Divide-and-Conquer

Many computations are
naturally expressed as recursive programs
ITERATION

```
    another way to write "for" loop
```

"DIVIDE and CONQUER"
solve a problem by dividing into smaller ones
Ex: root finding via "bisection"

Finding Root via Bisection

float bisectr(float $1, f l o a t r)$ \{
float m;

$$
m=(1+r) / 2
$$

$$
\text { if }((r-1)<e p s i l o n) \text { return } m ;
$$

$$
\text { if }(f(m)>0.0)
$$

return bisectr (m, r);
else
return bisectr(1, m);
\}

Binary Search

Suppose an array A has N integers, in order
$\underset{\mathbf{f}(\mathbf{x})}{\mathbf{X}} \mathbf{1}$ SEARCH PROBLEM: is a given integer v in A ?

- Observations:
- An array is a function mapping integer indices to contents
- A sorted array is a monotonically increasing function

Traveling Salesman Problem

Given a set of points, find the shortest tour connecting all the points

- Recursive solution for trying all possibilities

Traveling Salesman Problem

- Recursive solution for trying all possibilities

Traveling Salesman Problem

- Takes N! steps
- Cant run for very large N
no computer can ever run this
to completion for $N=100$ [100! > $10^{\wedge} 15^{\circ}$]
[stay tuned]
Drawing a Dragon Curve
Use simplest turtle graphics
F: move forward one step (pen down)
L: turn left
R: turn right

Intuition of Algorithm

- $\overline{\mathrm{AB}}$ is a smaller dragon curve by itself
- $\overline{\mathrm{CB}}=\overline{\mathrm{AB}}$
- Therefore $\overline{\mathrm{BC}}$ is the reverse of $\overline{\mathrm{AB}}$
- Therefore every turn along $\overline{\mathrm{BC}}$ is the opposite of the corresponding turn on AB

Recursive Program for Dragon Curve

Alternate "dragon"

- Easy to implement because of built-in
-turtle graphics
- stack (dup repliates stack top)
- Passing args to recursive functions is tricky all arguments and "scratch variables" are on the stack!

```
/L { 90 rotate } def
/R { 90 neg rotate } def
/F { 2 0 rlineto } def
/dragon
```

 \(\{\) dup 0 eq \(\rightarrow\) replicates top before popping for comparison
 \{ F pop \}
 \{ 1 sub dup dragon \(L\) nogard \}
 ifelse pushes two copies of (n-1) for the two recursive calls
 \} def
 /nogard
\{ dup 0 eq
\{ F pop \}
\{ 1 sub dup dragon R nogard \}
ifelse
\} def
200400 moveto
15 dragon
stroke
showpage

CAUTION:
$2^{\wedge} N$ line segments in curve of order $N \quad{ }^{P 6.16}$

What We Have Learned

- How recursion works
- A recursive call is no different from a "regular" call
- It involves saving the old environment for later return
- Learn to trace the execution of given recursive programs (using pictures)
- Learn to write simple recursion
- What's the base case?
- What's the induction case?

