CS 126 Lecture P4:
An Example Program

Outline

¢ |ntroduction

* Program
- Data structures
- Code

* Conclusions

11111111111111111

Goals

* Gain insight of how to put together a “large” program
*Learn how to read a “large” program

* Appreciate the central role played by data structures
* Master the manipulation of linked lists (pointers)

CSs126 5-2 Randy Wang

Central Role of Data Structures

* How to choose data structure
- Ease of programming
- Time efficient
- Space efficient

* Design of algorithms is largely design of data structures
- Data structures largely determine the algorithms

CS126 5-3 Randy Wang

* Introduction
* Program

- Data structures

- Code
* Conclusions

Outline

CS126

5-4

Randy Wang

Represent A Single Card

Use integers e-g for the cards

& o+ 9 &
c 1] H %
Q 13 26 33
1 14 27 40
2 18 a9 41
3 16 25 42
4 17 aa 43
= 19 a1 ad
& 14 33 45
7 20 a3 48
a 21 ad a7
9 a3 15 48
10 23 a4 49
11 24 a7 50
12 25 L] LN |

card % 13 : face value
card/ 13 : kind

CS126

5-5

Randy Wang

Represent the Decks

Use linked lLisds dor the han

card | I

declare
pointer

type

typedaf struct cardlises 1iek;
struot cardlist { int cazd; link nazxt;)
lipk Atop, Abot, BLop, B]:H:‘l:-l\

declare
link
element
type

A wins if ([Atop-lcardl®igl ¥ {llinpw
B owing i [[Atep-teardl®ig] 4 (Btgpeioardl®

War if {([(Atop=leardliizl == ([B1a ardl¥agl

declare
pointer
variables

%:;PF:L_A{% epr"ﬁu'r ‘ldereferencing
= : .

* Why linked lists?
- We want you to learn linked lists :)

- Little need for fast random access of the deck, mostly at th

and bottom of the stack

e top

CS126

5-6 Randy Wang

[Sample game of War

1 13 0 34 ... 11 7 39 28 41
21 43 3B dd ... 45 Z 50 4B 3

1:@13 0 24 27 ... T 2% 26

41
83 38 44 6 ... 2 50 48 5

A 0 34 27 13 ... Z9 36 41
L H 44 6 3% ... 50 48 % 51 10 tl 21}

24 27T 13 36 ... 215 41

3

.ET 13 36 40 ... 41

n: f3T\13 36 40 14 .. (e dDS

B: 32 4 5 47 ... 51 10 1 21 15 42 38 D

d4 & 33 4 ... 4B 9 51 10 1 2@
6§39 4 5 ... B 5116 1 31 1€ i!tEBﬂi

Ad13f 18 40 14 R T |
nd 39/ 4 5:'.'.-- 10 1 31 16 43 :mnEr.ls]

At ... 24

B: ... 100 1 21 16 43 38 o 2T Etl! 36 40 14 35 wwa

LIE I T

Outline

* Program
- Pata-struetdyres
- Code

e Conclusions

CSs126 5-8 Randy Wang

(main 0

{ int cnt;

(cnt = play(huffl

if (Btop == NULL)

printf("A wins in %d steps ", cnt);
if (Atop == NULL)

printf ("B wins in %d steps ", cnt):;

* Revisiting the concept of top-down design
* Revisit how to read code

* All your functions should be this short and readable
(although the lecture notes don’t always practice this)

CSs126 5-9 Randy Wang

[Create and shuffle the dech (algorithm]]

'(:_Iin.rd to do efficiently without an array (1]) A Goal: create a linked

list of random cards

ke
s Fill an array with integers in order = htrmmii
s Make a pass through to shuffle
® pick up o néw cgrd
* pick a randem pesition ameng cards in hand
* exchangy new card with card at that position

Ex: 12 cards g/ystart with sorted cards

« @ 1 2 3 4 5 & 8

. 0 e SRS B

.o (1) 1

o a
time|l. 2 13 o 2

. 203 o 1 1

(5 &« 3 0 1 2 0

T . j_._M O exchange

. 5 4D o 5 3 1 3

. & 4 7 0 8 afala 1 [

'_ 5 4 7 0 6 2 8 3(8)1 ps

index of the card to exchange with
% Pass through array te build list

[Create and shuffie the dech (codel]

f;;; randl{int i)
{ return rand(} F (RAND MEX/Ll « 1) }

1ink shutfls(inkt H) =
04 I— et rlom 1.1-.""'.
nt 4; k. tr e]
ine &[] : : o
1link x.{§.¢1 = malloc{sizecf *deck);:

For (k=0; kK < B kes) afkl| = k ill array with sorted cards
for (k = 1; k < n: kes—9-1Qr €ach card in the array

{
shufﬂe)/,| 4 = rand1 (k) =g pPiCk @ fandom card in front of it

array ;] t = afkl; alkl = afil: hri1 = c=sSwap this and the random card
== dack; u--card = alo] ~m-Startthe deck with the first card
Fer ik = 1; k < Hy ke+r-fOr each'cardin the array

build
linked
list

wernext = malles(sizecf “XNa 44 this card to the bottom of deck

#¥ = x-»pask; :-roard = alk

)
x-:mext = NuLL;—g-Mark the of'the deck

reaturn dackr

Shuffle a linkad list directhy??
put ith card in randsm pasition?
works, but too slow for huge lists

Demo Part ofshuffle()

CSs126 5-12 Randy Wang

Outline

* Introduction

* Program
- Pata-struetures
- Code

e Conclusions

CSs126 5-13 Randy Wang

(_ beal the cards _}

® Fupction with a linked list s arqumant
§ Maokes two new linked lists for players A& and B
®Sets =|nhﬂl variables
.F.._tﬂ. &H}' limks +a first, last nodes of &
l_-r_!p, l|_l|.r1': links Ta flrat, last nedes aof B
Pees *nof® creaft any Rew rades)

r'a..n.u.—a: aj T ——
[

Atop = d; Rbot = 4: 4 = donexe—="moyve” one card from deck to A pile
Btop = d; Bhot = 4; 4 = 4--zexe > ‘MOVE” one card from deck to B pile

while (4 I= HODLL} p» As long as the deck is not empty
1

move one more from deck to A
stop if the deck is empty
move one more from deck to B

tl.'bqh-:-nn:d‘. e dy Abet = d; d = d=rnmxk”
if (d == HULL} break;
Bhot->mext = d) Bhet = d; d » d-rnext
1

L Abot-rpaxt = HILL) Bbot->next = HDOLLf
b

end of piles are marked

Fiigm o
T A o

Pt d

B o B SO

Demodeal()

CS126 5-15 Randy Wang

|: Peace (war with no wars)]

Starting point for implamentation
("Why do we have wars, anyway?"’]

int play({link dack)

{ int Awval, Bval, ent = 0; link Ttop, Thot;

deal (deck)

while ({Atop != HULL] && (Ebtap l= MULL))

{ omt++g

T'hp E"i'ﬂ.l = Atop-rcard % 13;

Bval = Btop-»card % 13;

Ttop = Atop; Thot = EBEtop)
Akep = Atop-*next; Btop = Btop->next)

= Thaokt; Thost-*next = FULL)

Take one card from each of th
A, B piles and form a 2-card
stack (Ttop, Thot).

U

Abot = Thot)

if [Atop == NULL) Atep = Toop:
eleps Abot-rpeamt = Ttop:

{

Bbot = Thok)
¥
¥

Farurn =Ept;

®loc pEacE.S: B, oEk

Gome "never’ ands, for many (almost all?] deals
E' Hn_ﬁ; E

ffthat's® why we have wars']

if (Btop == HULL} Btap = Ttopi
aloe Hbot-snast = Thap:

i ?

Put the 2-card stack at the
bottom of the A pile

Fiz

Demoplay()

CS126

5-17

Randy Wang

I: Add the code for war]
A

d the fellewing cede bafore the

——

fu 'E'_fﬂrﬂlS

if {Awval > Bwval)
test in ‘peace’ code

whila [Aval == Bwvall
/| i

Iniﬂ_Fﬁmf
For (i = 07 i <= WAR; i4+)

{
if (Atop == NUOLL] return cnt)
Thot-»naxt = Atop; Thokt = Rtap;
Atap = Abap=»nast;

move a number of card;
from A pile to T pile

peek at top of A pile

far (i = 0; i <= WAR; i#+)
{
if (Btop == WNULL) return <nk;
Thot-rnaXxt = Btop; Thot = Btop;
E-tl'_'lp = Btop->neaxt)
IlII "

1 Eval = Thot->card % 13;

]
kHJE?t—bnunt =

hile” net "if; to handle multiple wars
BUE (1) A wins even if both empty on Same war

MULL;

e —

= Game 3TILL *never® ands:

thousands of meves, or mord
(wiyt)

[One bit of uncertainty J

#Assume twe cards in battles
are randemly exchanged when picked up

if (ramdI(2)}
{ Ttop = Atop; Thot = Brop;]
else { Ttop = Btopy Thot = Atopjy }

Typical of simulation applications:
(p-r"nplr use of randemness is vitall

#Ten typical games

B wins in@:ups
A wins in 101 stTeps

B wins in 1268 steps
B wins in 218 steps
B wins in 253 steps

o7

A wins in
A wins in
B wins in
B wins in

iei steps
119 steps
78 steps
By steps

B wins in@ﬂtps

Outline

* Introduction

° Pregram
- Pata-struetures
- Code

* Conclusions

CS126 5-20 Randy Wang
[ARswer :]
Q: "Fo, how long deas i+ take?
A: “About je times through the deck (ic4 battles

"How do you knowl”
"I played a million games...”

e

“That sounds like funl
het's try hu.'r'il'lg bi.g,l'.r bottles..”

>

[thnhgr_ value af WAR]

issses trials

s a

' f.q: o

5 33? il =

3 | 254 Lo

4| g7 o

g gg

& §izk le‘]

7| 1ea oo |

8y 8y '-:
F\?i Gl B R Tr R P

LI

(Problems with simulation)

Doesn't precisely mirror real game
® People pick up cards differently

= 5eparate hand, pile
* requires much more code to handle

¢ example: could have war as pile runs out
* ne real reasen to simulate that part (7)

» sort-of-shuffle pile after war?

* Tradeofs
i 5 . :
+ convanience for implementation
» fidelity to real game

S5uch tradeoffs typical in simulation
* try to identify which details matter

Stuff We Have Learned in This Lecture

* The process of constructing a “complex” program in a top-
down fashion
Fgin

* Reading a “complex” program to trace its top-down
structure

* Judicious algorithm design starts with judicious choice of
data structures

* Good examples of linked list (and pointer) manipulatio
- Draw pictures to read and write pointer codes

>

CSs126 5-23 Randy Wang

