
CS 126 Lecture P3:
Data Structures

CS126 4-1 Randy Wang

Outline
(This is a hard lecture--study these slides after class.)

• Introduction

• Array

• Structure

• Linked list

• Implementation: C pointer

CS126 4-2 Randy Wang

Why Data Structures?

• Users’ needs
- What to do when we have a large amount of data to deal with?
- Want to organize it in ways that are easy-to-understand
- Want to be space-efficient
- Want to be time-efficient

• What hardware gives us
- Just a bunch of uniform, individually addressable storage
elements

• Want to bridge the gap between the abstractions

Memory elements
C basics: int, float, char, ...

????
Users’ views: students, bank records, ...

CS126 4-3 Randy Wang

Data Type and Data Structure

CS126 4-4 Randy Wang

Outline

• Introduction

• Array

• Structure

• Linked list

• Implementation: C pointer

CS126 4-5 Randy Wang

Array
Content

0
Index

1
2
3
4

h
e
l
l
o

100
Memory address

101
102
103
104

array name: word
3rd letter: word[2]

(analogy: seats and
students)

CS126 4-6 Randy Wang

Array (cont.)

7
0
1
2
3
4
5
6
7
8
9

Use exponents as array indices

Store coefficients in the array

Memory address

{i = val / 10;

h[i]++; }

Initialize all the histo-bins to 0.

Calculate which bin;
Increment that bin;

for all bins
print right # of stars for each

CS126 4-10 Randy Wang

Demo 1

CS126 4-11 Randy Wang

Outline

• Introduction

• Array

• Structure

• Linked list

• Implementation: C pointer

(analogy: bag of
potentially different
things)

CS126 4-14 Randy Wang

Outline

• Introduction

• Array

• Structure

• Linked list

• Implementation: C pointer

CS126 4-15 Randy Wang

Linked List

• “Dynamic allocation”: allocate houses on demand

Mom

LA
Roommate

Princeton

You

NYC

forwarding

forwarding

address

address

CS126 4-18 Randy Wang

Outline

• Introduction

• Array

• Structure

• Linked list

• Implementation: C pointer
- pointers and simple variables
- pointers and arrays
- pointers and linked lists
- for each of these, understand how to
 + declare the variables involved
 + how to initialize them
 + how to use them

CS126 4-19 Randy Wang

Pointer

• &x and p are equivalent (& returns address of house)

• x and *p are equivalent (* gets to house at address)

int x; build a house of type int and name x

int *p; p can contain an address to any int-type house (decl)

p = &x; p is now the address of house x (init)

x = 58; the person 58 moves into house x

*p = 58; the person 58 moves into the house at address p (use)

H ouse address:
po in ter to the

You: the va lue

var iab le: & x , p

con ta ined in the
variab le x , l ike 58

H ouse:
nam e of the
var iab le : x

CS126 4-20 Randy Wang

Pointer and Array

• &x[i] and p+i are equivalent

• x[i] and *(p+i) are equivalent

int a[100]; int *p; p = &a[0]; *p = 58;...

p 58

a[0]

p+1 2

a[1]

p+2 10

a[2]

p+3 125

a[3]

CS126 4-21 Randy Wang

Pointer and Linked List

p 91

*p

How to define a linked list type (recipe!!):

The meaning of variables and fields:bu t I haven ’t even to ld
you how to in it ia lize the
poin ters yet!!

M uch m ore next lecture!

CS126 4-23 Randy Wang

Demo 2

CS126 4-24 Randy Wang

Closing

• Whew!

• Lots of material in this lecture.

• Pointers are confusing.

• Study these lecture slides.

