
CS 126 Lecture P1:
Introduction to C

CS126 2-1 Randy Wang

Outline

• Administrivia

• Background

• Syntax

• Libraries

• Algorithms

CS126 2-2 Randy Wang

To Get Started

• Visit course web page:
- http://www.cs.princeton.edu/courses/cs126

- Keep up with announcements

• Get course packet from Pequod (ready now)

• Makeup precept by Lisa (7pm, Wednesday)

• Programming assignment 0 due Wednesday night

• Get started on readings and exercises

• Lab TA schedule on the web

• PA1 in course packet has a typo (see web)

CS126 2-3 Randy Wang

Learning C

• No prior programming experience assumed!

• Don’t expect to learn C solely from these lectures--
 they are just some examples

• Readings for C programming
- K&R: for people who have had C or other programming
- D&D: for beginner programmers
 ~ first 170 pages for the first two weeks
 ~ next 100 pages for the third week

• Experiment with code fragments on your own

CS126 2-4 Randy Wang

Outline

• Administrivia

• Background

• Syntax

• Libraries

• Algorithms

CS126 2-5 Randy Wang

Background

• Born along with Unix in the early 70s,
one of the most popular languages today

• Features:
- Exposes much of machine details
 (Remember “abstractions”? C exposes low level abstractions)
- Terse syntax

• Consequences:
- Positive: you can do whatever you want
 -- flexible and powerful
- Negative: you can do whatever you want
 -- easy to shoot yourself in the foot!

CS126 2-6 Randy Wang

Aspects of Learning to Program

• Syntax -- like learning English

• Algorithms -- like learning to tell a coherent story
(not necessarily in English)

• Libraries -- like learning to reuse plots written by others

• These are quite different learning processes

CS126 2-7 Randy Wang

Outline

• Administrivia

• Background

• Syntax

• Libraries

• Algorithms

CS126 2-8 Randy Wang

Functions

• A C program is a sequence of functions

• f: a C function is very much like a math function

• g: can have more diverse inputs than you have seen
 example: numbers, strings, more complex data structures

• h: doesn’t have to have outputs
- their purpose is “side effects”
- like Pascal “procedures”

f g h

CS126 2-9 Randy Wang

Defining a Function

• First two lines: called “Prototype”, or the “interface”

• The rest (enclosed by {}): is the body, or the
“implementation”

• Remember the concept of abstractions?

f

x

y

x+y

float

f(float x, float y)

{

float z;

z = x + y;

return z;

}

output type
input type

inp u t n am e
tem porary scratch space

output va lue

function
body

• Remember
“abstractions”?

f

f

main

CS126 2-14 Randy Wang

Outline

• Administrivia

• Background

• Syntax

• Libraries
- Commonly needed codes written for you already
- Get an idea of what’s there (look at back of K&R)
- When you see a possible use, understand the interface
- Another application of abstractions

• Algorithms

• Sometimes you don’t
see a precise match in
the library...

• See if you can leverage
what’s there to
accomplish what you
want.

CS126 2-18 Randy Wang

Outline

• Administrivia

• Background

• Syntax

• Libraries

• Algorithms

Print
9-by-9
random
patterns

CS126 2-20 Randy Wang

Top-down Design

• Break down a big problem into smaller sub problems

• Break down small sub problems into smaller subsub ones

• Repeat until all details are filled out

loop 9 times

print a random row at a time

loop 9 times

print a random element at a time

if head print “*”

else print “ “

Print one element
Print one row
Print all rows

CS126 2-22 Randy Wang

Reading Code

• Top-down is the use of abstractions

• Top-down is how programmers write code

• When we read code
- First, we pretend to be the computer, and “trace” the execution
- In the process of tracing, the goal is to discover/understand the
top-down structures (abstractions)

while I still have money, repeat:

make a bet

print a star at the “right” place

Ju st lik e the last s lid e,
excep t th a t it re tu rn s # o f
tr ia ls instead o f p r in t ing
sta rs

Loop for different
starting amounts (rows)

Try 5 times for each
amount (columns)

Print the result
of each trial
(a cell)

Experiment [main()]

Ruin sequence [doit()]

Random bit [rand()]

(marrying previous two programs)

