
Name:
Login Name:
Preceptor Name:
Precept Number:

This exam has 10 questions. The weight of each question is printed in the table below and next to each question.
Do all of your work on these pages (use the back for scratch space), giving the answer in the space provided. Put
your name on each page (now). Sign the Honor Code pledge.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Q u estion W orth E a rn ed

1 5

2 7

3 7

4 7

5 6

6 6

7 5

8 6

9 4

10 7

To ta l 6 0

Computer Science 126 First Midterm Exam
10/20/1999 7pm - 8:30pm

1 o f 10

Name:

1. Debugging C [5]
The following program finds the value that occurs most often in an integer sequence of values between 0 and 99.
Although this program will compile, there are some bugs in the code that will prevent it from calculating the cor-
rect answer. Find the errors and make the necessary corrections.

Error 1:

Error 2:

Error 3:

Error 4:

Error 5:

#include <stdio.h>

void

main()

{

 int num, i, maxi, a[99];

 while (scanf("%2d", num) != EOF)

 a[num]++;

 for (i = 0; i <= 99; i++);

 if (a[i] > a[maxi]) maxi = i;

 printf("%d\n", maxi);

}

2 o f 10

Name:

2. Unix Standard I/O Redirection [7]
The following program is compiled to obtain an “a.out” file.

Assume the following:

 a) the file "input" has a single number "58" in it; and
 b) if keyboard input is needed, you will type "58".

Answer what the following commands do by filling out the table. If the command results in an error, write "yes"
in the "error?" column and leave everything else blank.

command error
?

keyboad
input

?

terminal
output

?

output
file
?

output text

0 a.out yes yes 59 is output.

1 input < a.out

2 input | a.out

3 a.out < input

4 a.out > output

5 a.out > a.out

6 a.out | a.out

7 a.out < input | a.out

#include <stdio.h>

void

main ()

{

 int n;

 scanf ("%d", &n);

 printf ("%d is output.\n", n+1);

}

3 o f 10

Name:

3. Structures [7]
Given the following definition:

typedef struct {float a; float b;} Interval;

Define a type for rectangles (Rect) that are parallel to the axes in a Cartesian coordinate system. Use the type
Interval defined above.

Write a function that returns 1 if a point falls within a rectangle, 0 otherwise. Use the function prototype below
and define your own Point type.

int inrect(Point, Rect) ;

4 o f 10

Name:

4. Pointers and Arrays [7]
What does the following program print?

#define N 6

main() {

 int i;

 int a[N];

 int *p, *q;

 p = &a[N-1];

 q = p - (N-1);

 for (i = 0; i < N; i++) {

 *(p-i) = i;

*(q+i) = i;

 }

 for (i = 0; i < N; i++) {

 printf("%d ", a[i]);

 }

 printf("\n");

}

5 o f 10

Name:

5. Pointers and Linked Lists [6]
Suppose that a linked list is made up of nodes of type

typedef struct node *Link;

struct Node {int key; Link next; };

that you are given a pointer list of type Link, which points to the first node of the list; that the last node has NULL
as its link; and that there are at least two nodes on the list. Write a code fragment to add a new node just after the
second node of the list.

6 o f 10

Name:

6. Linked Lists and Recursion [6]

Suppose the above function is given a list whose content is (9 8 1 12 8 2 5 7) . (The head of the list contains
the key 9. The next link of the last element is NULL.) What does the above function return?

Suppose the above function is given a list whose content is
(-9 -8 -1 -12 -8 -2 -5 -7) . What does the above function return?

typedef struct node *Link;

struct Node {int key; Link next; };

int

f(Link list)

{

int a,b;

if (list == NULL)

return 0;

a = list->key;

b = f(list->next);

if (a > b)

return a;

else

return b;

}

7 o f 10

Name:

7. ADT: Stacks and Queues [5]
Suppose we have an empty stack of integers and an empty queue of integers to begin with, what will the following
code fragment print?

for (i = 0; i < 100; i++) stackPush(i);

for (i = 0; i < 100; i++) queuePut(stackPop());

for (i = 0; i < 100; i++) stackPush(queueGet());

for (i = 0; i < 100; i++) printf("%d ", stackPop());

8 o f 10

Name:

8. Recursion [6]
Given the recursive solution of the "Traveling Salesman Problem" discussed in class:

When executing visit(4) , how many times does it invoke checkLength() ?

When executing visit(4) , how many times does it invoke visit(2) ?

visit(int N) {

 int i;

 if (N == 1) {

 checkLength();

 return;

 }

 for (i = 1; i <= N; i++) {

 swap(i, N);

 visit(N-1);

 swap(i, N);

 }

}

9 o f 10

Name:

9. Searching Arrays [4]
You have learned binary search. Let us extend it to "ternary search". In binary search, we repeatedly divide the
search range into two roughly equal halves and search only one of them. In a ternary search, we repeatedly divide
the search range into three roughly equal parts and search only one of them. In the worst case, how many compar-
isons do we make to search an array of N elements?

A) Log2(N)
B) Log3(N)
C) 3*Log2(N)
D) 2*Log3(N)
E) 2*Log2(N)
F) 3*Log3(N)

Briefly justify your answer (with one or two sentences or a simple picture).

10 o f 1 0

Name:

10. Trees [7]
You are given the following binary search tree:

We perform a preorder traversal using a stack. During the traversal, at the moment when the top of the stack is 8,
what is the content of the entire stack? As a reminder, here is the traversal code:

50

14

336

12 25 404

8 131

60

65

void

preorder(Link h) {

 stackPush(h);

 while (!stackEmpty()) {

 h = stackPop();

 visit(h);

 if (h->r != NULL)

 stackPush(h->r);

 if (h->l != NULL)

 stackPush(h->l);

 }

}

