
Name:
Login Name:
Preceptor Name:
Precept Number:

This exam has 9 questions. The weight of each question is printed in the table below and next to each question. Do
all of your work on these pages (use the back for scratch space), giving the answer in the space provided. Put your
name on each page (now). Sign the Honor Code pledge.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Q u est ion W or th E arn ed

1 Linked lists and recursion 11

2 Binary search trees 9

3 Arrays, pointers, and complexity 10

4 Java 8

5 Combinational circuits and two’s complement arithmetic 11

6 FSAs and grammar 11

7 Automata 11

8 TOY architecture 12

9 ADT, TOY, compilers, two’s complement, and operating systems 17

To ta l 1 00

Computer Science 126 Final Exam
01/21/2000 1:30pm - 4:30pm

1 o f 17

Name:

1. Linked Lists and Recursion [11]
Assume the following linked list definition.

a) Write a function that returns a new list with a new node added to the beginning of a given list. The prototype is
given below. The new node is to contain account and amount in it.

b) Complete the following recursive function which returns the sum of the amount values in the list:

typedef struct node *link;
struct node {
 int account;
 float amount;
 link next;
};

link
insertHead (link list, int account, float amount)
{

}

float
totalAmount(link list)
{
 if (list == NULL)

return ;

 return ;
}

2 o f 17

Name:

c) What does the following program fragment print?

link
foo(link list, int a)
{
 if (list == NULL)
 return NULL;
 if (list->account <= a) {
 list->next = foo(list->next, a);
 if (list->account == a)
 return list->next;
 }
 return list;
}

/* just prints the list */
void
print(link list)
{
 link t;
 for (t = list; t != NULL; t = t->next)

printf("[%d %f] ", t->account, t->amount);
 printf("\n");
}

int
main()
{
 link list = NULL;

list = insertHead(list, 4000, 50.0);
list = insertHead(list, 3000, 20.0);

 list = insertHead(list, 2000, 70.0);
 list = insertHead(list, 1000, 40.0);

print(list);
print(foo(list, 2500));
print(foo(list, 3000));

}

3 o f 17

Name:

2. Binary Search Trees [9]
a) Insert the following keys into an empty binary search tree in the given order. Draw the resulting tree.

50, 14, 60, 65, 33, 25, 6, 4, 12, 40

b) Print the keys in the above tree using postorder traversal.

4 o f 17

Name:

c) For a general binary search tree with more than two nodes of distinct keys (not necessarily the tree on the
previous page), answer the following questions.

c.1) Under what circumstances, if any, can the preorder and postorder traversals produce the same result?

c.2) Under what circumstances, if any, can the inorder and postorder traversals produce the same result?

c.3) Under what circumstances, if any, can the preorder and inorder traversals produce the same result?

5 o f 17

Name:

3. Arrays, Pointers, and Complexity [10]

a) What does this program print?

void
g(int a[], int asize)
{
 int *p, *q;
 int t;
 for (p = &a[asize-1]; p >= &a[0]; p--) {

for (q = &a[0]; q < p; q++) {
 if (*q > *(q+1)) {

t = *q;
*q = *(q+1);
*(q+1) = t;

 }
 }
 printf("%d ", *p);

 }
}

main()
{
 int a[8];
 int i;
 for (i = 0; i < 8; i++) a[i] = 8-i;
 g(a, 8);
}

6 o f 17

Name:

b) What is the complexity of the function g() in “big O” notation?

c.1) Is this function in the complexity class P?

c.2) Is this function in the complexity class NP?

c.3) Is this function in the complexity class NP-Complete?

7 o f 17

Name:

4. Java [8]
What does the following program print?

public class A {
 int x,y;
 public A() {x = 1; y = 2;}
 public void change(int x) {this.x = x;}
 public int foo() {return x*y;}
 public int bar() {return x;}
}

public class B extends A {
 int x = 5;
 public int foo() {return x+y;}
 public int baz() {return x;}
}

class Test {
 public static void main(String[] args) {

B b = new B();
B x = b;
System.out.println(b.foo());
b.change(10);
System.out.println(b.foo());

System.out.println(b.bar());
System.out.println(b.baz());

System.out.println(x.bar());
System.out.println(x.baz());

 }
}

8 o f 17

Name:

5. Combinational Circuits and Two’s Complement Arithmetic [11]

We first construct a one-bit (bit-slice) subtracter. Its interface is as the following:

It has three inputs and two outputs: x is the bit to subtract from; y is the bit to subtract; z is the input borrow bit
that is also subtracted from x ; d is the output difference bit; and b is the output borrow bit.

a) Derive all the necessary truth tables.

b) Derive all the output boolean expressions.

x y z

b

d

9 o f 17

Name:

c) We now want to construct a 4-bit subtracter that has the following interface:

Recall that the notation used in this illustration means that x is a 4-bit wire x3x2x1x0. Similarly,

y=y 3y2y1y0 and d=d3d2d1d0. Illustrate how to use the bit-slice subtracter of the previous page to build a 4-
bit subtracter.

d) We now want to add an overflow output bit v to the subtracter (The inputs x and y are two two’s complement

integers):

Recall that the overflow bit is 1 iff the answer of the subtracter does not fit in 4 bits. Are the borrow bit b and the
overflow bit v the same?

x

b

4
y

4

d
4

x
b

4
y

4

d
4

v

10 o f 1 7

Name:

6. FSAs and Grammar [11]

In this non-deterministic FSA, B is the start state, and A is the accept state.

a) Give the Type 3 grammar that corresponds to this machine.

b) Convert the non-deterministic FSA (of part a) into a deterministic FSA by filling in the missing transition edges

in the following graph.

c) Which one of the following regular expressions does not describe this FSA?

A) 10*(110*)*
B) (10*)|(10*110*(110*)*)
C) (10*)|(10*11(0*11)*)

A

0

1

B

0

C

0,1

11

A B,C

B C

1 A,C

11 o f 1 7

Name:

7. Automata [11]

In the Turing machine illustrated above, The state labeled with “Left Test & Erase” is the start state; and “Yes” is
the accept state.

a.1) Does the machine accept the following string (given the initial read head position)?

a.2) Answer the same question for the following string.

a.3) Answer the same question for the following string.

a.4) Answer the same question for the following string.

L eft Te st &
E ra se

M o v e
R igh t

R igh t Test &
E ra se

Yes

N o

M o v e B ac k
to L e ft# /#/R 2/# /L

1 /1 /L 2 /2 /L

1/1 /R 2/2 /R

1/# /R #/# /L

/# /L

2 /2 /R 1/1 /L
/# /R

1 2 # #

1 1 # #

1 2 1 #

1 1 2 2

12 o f 1 7

Name:

b) Characterize the strings that are accepted by this Turing machine.

c) Does there exist a push down automaton that can recognize the language accepted by this Turing machine?

d) Does there exist a finite state automaton that can recognize the language accepted by this Turing machine?

13 o f 1 7

Name:

8. TOY Architecture [12]
Assume that each of the following operations in the TOY datapath takes the stated amount of time (in nanosec-
onds):

(Each of these operations must finish within a single clock cycle.)

a) How much time (in nanoseconds) does each of the following instructions minimally need to complete?
a.1) 9923 r1 <- mem[r2+r3]
a.2) 1114 r1 <- r1+r4
a.3) A923 mem[r2+r3] <- r1

b)
b.1) What is the minimum cycle time for a single cycle design?
b.2) What is the minimum cycle time for a multicycle design?

Operation Time (ns)

1 fetching an instruction from memory 0.8

2 reading from the register file 0.8

3 executing any ALU operation 0.8

4 accessing data memory 0.9

5 writing the result back into the register file 0.8

6 all other delays (those of MUXes, controls, wires, etc.) 0

14 o f 1 7

Name:

c) Given the following TOY program:

c.1) Assume a single cycle design and the cycle time of b.1), how much time does this program actually take?
c.2) Assume a multicycle design and the cycle time of b.2), how much time does this program actually take?
c.3) Using the same assumptions, is one of these two designs always faster than the other for any program?

1A: 9923 r1 <- mem[r2+r3]
1B: 1114 r1 <- r1+r4
1C: 1114 r1 <- r1+r4
......
22: 1114 r1 <- r1+r4
23: A923 mem[r2+r3] <- r1

} 8 times

15 o f 1 7

Name:

9. ADT, TOY, Compilers, Two’s Complement Arithmetic, Operating Systems [17]
Consider the following arithmetic expression:

(1*2)-(3*(9-2))

a) Give the postfix representation of this expression.

b) Evaluate this postfix expression using a stack. Give the content of the stack when the stack is tallest. Graphi-
cally point out the top of the stack.

c) Give the syntax tree that our TOY compiler constructs for this expression.

16 o f 1 7

Name:

d) Fill in the missing pieces of the machine code generated by our TOY compiler for this expression.

e) Give the content of R1 in hexadecimal when TOY halts after executing the above program.

f) Change the arithmetic expression to the following c statement

a = (a*2)-(3*(9-2))
where a is an integer variable that is stored at memory location 0x00 . Assume R0 holds the value 0. What
changes should the TOY compiler make to the machine code of part d)?

g) We decided to add multiprogramming support to TOY. To do this, 1) we added timer interrupts to TOY, and 2)
we wrote a small TOY Operating System that takes over control when a timer interrupt occurs. Of the two above
TOY programs [program in part d) and program in part f)], can we run multiple instances of them simultaneously?

A) Program d only
B) Program f only
C) Both
D) Neither

1A: B101 R1 <- 1

1B: B202 R2 <- 2

1C: 3112 R1 <- R1 * R2
1D: B203 R2 <- 3
1E: B309 R3 <- 9
1F: B402 R4 <- 2

20: 2334 R3 <- R3 - R4

21: 3223 R2 <- R2 * R3

22: 2112 R1 <- R1 - R2
23: 4102 print R1
24: 0000 halt

Appendix. TOY Instruction Set

Feel free to tear out this sheet.

INSTRUCTION FORMATS

Format 1: opcode, r0, r1, and r2
Format 2: opcode, r0, and 8-bit addr

Indexed addressing (for format 2):
if leading bit of r0 digit is 1,
then addr = r1 + r2

TRANSFER between registers and memory

9: load
A: store
B: load address

r0 <- mem[addr]
mem[addr] <- r0
r0 <- addr

ARITHMETIC operations

1: add
2: subtract
3: multiply

r0 <- r1 + r2
r0 <- r1 - r2
r0 <- r1 * r2

LOGICAL operations

C: xor
D: and
E: shift right
F: shift left

r0 <- r1 ^ r2
r0 <- r1 & r2
r0 <- r0 >> addr
r0 <- r0 << addr

CONTROL

0: halt
4: system call
5: jump
6: jump if positive
7: jump and count

8: jump and link

halt
print r0 on tty
pc <- addr
if (r0 > 0) pc <- addr
r0--
if (r0 != 0) pc <- addr
r0 <- pc
pc <- addr

